Qingbin Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5806846/publications.pdf Version: 2024-02-01

OINCRIN THENC

#	Article	IF	CITATIONS
1	Ultralight Graphene Foam/Conductive Polymer Composites for Exceptional Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2017, 9, 9059-9069.	4.0	438
2	Transparent Conductive Films Consisting of Ultralarge Graphene Sheets Produced by Langmuir–Blodgett Assembly. ACS Nano, 2011, 5, 6039-6051.	7.3	394
3	Spontaneous Formation of Liquid Crystals in Ultralarge Graphene Oxide Dispersions. Advanced Functional Materials, 2011, 21, 2978-2988.	7.8	362
4	Fabrication of Highly-Aligned, Conductive, and Strong Graphene Papers Using Ultralarge Graphene Oxide Sheets. ACS Nano, 2012, 6, 10708-10719.	7.3	344
5	Fabrication of highly conducting and transparent graphene films. Carbon, 2010, 48, 1815-1823.	5.4	276
6	Self-alignment and high electrical conductivity of ultralarge graphene oxide–polyurethane nanocomposites. Journal of Materials Chemistry, 2012, 22, 12709.	6.7	269
7	Graphene oxide-based transparent conductive films. Progress in Materials Science, 2014, 64, 200-247.	16.0	263
8	Graphene-based wearable piezoresistive physical sensors. Materials Today, 2020, 36, 158-179.	8.3	262
9	Highly aligned, ultralarge-size reduced graphene oxide/polyurethane nanocomposites: Mechanical properties and moisture permeability. Composites Part A: Applied Science and Manufacturing, 2013, 49, 42-50.	3.8	242
10	Simultaneous in situ reduction, self-alignment and covalent bonding in graphene oxide/epoxy composites. Carbon, 2013, 59, 406-417.	5.4	238
11	Large dielectric constant of the chemically functionalized carbon nanotube/polymer composites. Composites Science and Technology, 2008, 68, 2290-2296.	3.8	232
12	Highly Thermally Conductive Dielectric Nanocomposites with Synergistic Alignments of Graphene and Boron Nitride Nanosheets. Advanced Functional Materials, 2020, 30, 1910826.	7.8	223
13	SnO2–graphene–carbon nanotube mixture for anode material with improved rate capacities. Carbon, 2011, 49, 4524-4534.	5.4	206
14	Effects of functional groups on the mechanical and wrinkling properties of graphene sheets. Carbon, 2010, 48, 4315-4322.	5.4	198
15	A highly sensitive graphene woven fabric strain sensor for wearable wireless musical instruments. Materials Horizons, 2017, 4, 477-486.	6.4	194
16	Ammonia solution strengthened three-dimensional macro-porous graphene aerogel. Nanoscale, 2013, 5, 5462.	2.8	193
17	Self-aligned graphene as anticorrosive barrier in waterborne polyurethane composite coatings. Journal of Materials Chemistry A, 2014, 2, 14139-14145.	5.2	190
18	Emerging Materials and Designs for Low―and Multiâ€Band Electromagnetic Wave Absorbers: The Search for Dielectric and Magnetic Synergy?. Advanced Functional Materials, 2022, 32, .	7.8	185

#	Article	IF	CITATIONS
19	Self-assembled reduced graphene oxide/carbon nanotube thin films as electrodes for supercapacitors. Journal of Materials Chemistry, 2012, 22, 3591.	6.7	177
20	Investigation of Molecular Interactions between SWNT and Polyethylene/Polypropylene/Polystyrene/Polyaniline Molecules. Journal of Physical Chemistry C, 2007, 111, 4628-4635.	1.5	176
21	Recent Advances in Design Strategies and Multifunctionality of Flexible Electromagnetic Interference Shielding Materials. Nano-Micro Letters, 2022, 14, 80.	14.4	159
22	Highly transparent and conducting ultralarge graphene oxide/single-walled carbon nanotube hybrid films produced by Langmuir–Blodgett assembly. Journal of Materials Chemistry, 2012, 22, 25072.	6.7	151
23	Rational design of two-dimensional nanofillers for polymer nanocomposites toward multifunctional applications. Progress in Materials Science, 2021, 115, 100708.	16.0	150
24	Initiating VBâ€Group Laminated NbS ₂ Electromagnetic Wave Absorber toward Superior Absorption Bandwidth as Large as 6.48ÂGHz through Phase Engineering Modulation. Advanced Functional Materials, 2022, 32, 2108194.	7.8	147
25	Highly Aligned, Anisotropic Carbon Nanofiber Films for Multidirectional Strain Sensors with Exceptional Selectivity. Advanced Functional Materials, 2019, 29, 1901623.	7.8	137
26	Tailoring Selfâ€Polarization of Bimetallic Organic Frameworks with Multiple Polar Units Toward Highâ€Performance Consecutive Multiâ€Band Electromagnetic Wave Absorption at Gigahertz. Advanced Functional Materials, 2022, 32, .	7.8	135
27	High-performance microwave absorption enabled by Co3O4 modified VB-group laminated VS2 with frequency modulation from S-band to Ku-band. Journal of Materials Science and Technology, 2022, 107, 155-164.	5.6	133
28	A three-dimensional multilayer graphene web for polymer nanocomposites with exceptional transport properties and fracture resistance. Materials Horizons, 2018, 5, 275-284.	6.4	129
29	Computational analysis of effect of modification on the interfacial characteristics of a carbon nanotube–polyethylene composite system. Applied Surface Science, 2009, 255, 3534-3543.	3.1	127
30	Ultrahigh dielectric constant and low loss of highly-aligned graphene aerogel/poly(vinyl alcohol) composites with insulating barriers. Carbon, 2017, 123, 385-394.	5.4	114
31	Effects of reduction process and carbon nanotube content on the supercapacitive performance of flexible graphene oxide papers. Carbon, 2012, 50, 4239-4251.	5.4	109
32	A simple method for the reduction of graphene oxide by sodium borohydride with CaCl2 as a catalyst. New Carbon Materials, 2015, 30, 41-47.	2.9	109
33	Spider-Web-Inspired Stretchable Graphene Woven Fabric for Highly Sensitive, Transparent, Wearable Strain Sensors. ACS Applied Materials & Interfaces, 2019, 11, 2282-2294.	4.0	105
34	Effect of chemisorption on the interfacial bonding characteristics of carbon nanotube–polymer composites. Polymer, 2008, 49, 800-808.	1.8	96
35	The interface effect of the effective electrical conductivity of carbon nanotube composites. Nanotechnology, 2007, 18, 255705.	1.3	89
36	Improved electrical and optical characteristics of transparent graphene thin films produced by acid and doping treatments. Carbon, 2011, 49, 2905-2916.	5.4	88

#	Article	IF	CITATIONS
37	Temperature dependence of the electrical properties of the carbon nanotube/polymer composites. EXPRESS Polymer Letters, 2009, 3, 769-777.	1.1	85
38	Sliced graphene foam films for dual-functional wearable strain sensors and switches. Nanoscale Horizons, 2018, 3, 35-44.	4.1	84
39	Large dielectric constant of the chemically purified carbon nanotube/polymer composites. Materials Letters, 2008, 62, 4229-4231.	1.3	82
40	Graphene/Boron Nitride–Polyurethane Microlaminates for Exceptional Dielectric Properties and High Energy Densities. ACS Applied Materials & Interfaces, 2018, 10, 26641-26652.	4.0	81
41	Anisotropic, Wrinkled, and Crack-Bridging Structure for Ultrasensitive, Highly Selective Multidirectional Strain Sensors. Nano-Micro Letters, 2021, 13, 122.	14.4	74
42	A molecular beacon and graphene oxide-based fluorescent biosensor for Cu2+ detection. Biosensors and Bioelectronics, 2013, 43, 379-383.	5.3	72
43	Graphene Size-Dependent Multifunctional Properties of Unidirectional Graphene Aerogel/Epoxy Nanocomposites. ACS Applied Materials & Interfaces, 2018, 10, 6580-6592.	4.0	71
44	Co-MOF-74 derived Co3O4/graphene heterojunction nanoscrolls for ppb-level acetone detection. Sensors and Actuators B: Chemical, 2019, 300, 127011.	4.0	62
45	Understanding the roles of activated porous carbon nanotubes as sulfur support and separator coating for lithium-sulfur batteries. Electrochimica Acta, 2018, 268, 1-9.	2.6	61
46	An Ultralight Graphene Honeycomb Sandwich for Stretchable Lightâ€Emitting Displays. Advanced Functional Materials, 2018, 28, 1707043.	7.8	61
47	Flexible temperature sensors made of aligned electrospun carbon nanofiber films with outstanding sensitivity and selectivity towards temperature. Materials Horizons, 2021, 8, 1488-1498.	6.4	61
48	Behavior of load transfer in functionalized carbon nanotube/epoxy nanocomposites. Polymer, 2012, 53, 6081-6088.	1.8	60
49	Human skin-inspired integrated multidimensional sensors based on highly anisotropic structures. Materials Horizons, 2020, 7, 2378-2389.	6.4	56
50	Influence of Nanotube Chirality, Temperature, and Chemical Modification on the Interfacial Bonding between Carbon Nanotubes and Polyphenylacetylene. Journal of Physical Chemistry C, 2008, 112, 16514-16520.	1.5	45
51	3D Interconnected Conductive Graphite Nanoplatelet Welded Carbon Nanotube Networks for Stretchable Conductors. Advanced Functional Materials, 2021, 31, 2107082.	7.8	41
52	Microwave-assisted simultaneous reduction and titanate treatment of graphene oxide. Journal of Materials Chemistry A, 2013, 1, 11451.	5.2	38
53	Graphene for Transparent Conductors. , 2015, , .		38
54	Structure control of ultra-large graphene oxide sheets by the Langmuir–Blodgett method. RSC Advances, 2013, 3, 4680.	1.7	36

#	Article	IF	CITATIONS
55	Ammonia sensitivity of amorphous carbon film/silicon heterojunctions. Applied Physics Letters, 2007, 91, .	1.5	35
56	Micro-diamond assisted bidirectional tuning of thermal conductivity in multifunctional graphene nanoplatelets/nanofibrillated cellulose films. Carbon, 2022, 189, 265-275.	5.4	35
57	Adsorption in Reversed Order of C ₂ Hydrocarbons on an Ultramicroporous Fluorinated Metalâ€Organic Framework. Angewandte Chemie - International Edition, 2022, 61, .	7.2	34
58	Soft Organic Thermoelectric Materials: Principles, Current State of the Art and Applications. Small, 2022, 18, e2104922.	5.2	32
59	Influence of chirality on the interfacial bonding characteristics of carbon nanotube polymer composites. Journal of Applied Physics, 2008, 103, .	1.1	30
60	Radial Collapse of Single-Walled Carbon Nanotubes Induced by the Cu ₂ O Surface. Journal of Physical Chemistry C, 2009, 113, 3120-3126.	1.5	30
61	Anisotropic conductive networks for multidimensional sensing. Materials Horizons, 2021, 8, 2615-2653.	6.4	30
62	Production of highly-oriented graphite monoliths with high thermal conductivity. Chemical Engineering Journal, 2022, 431, 134102.	6.6	27
63	Fabrication of transparent, flexible conducing graphene thin films via soft transfer printing method. Applied Surface Science, 2013, 276, 437-446.	3.1	26
64	Abnormal lâ€V characteristics and metal-insulator transition of Fe-doped amorphous carbonâ^•silicon pâ€n junction. Journal of Applied Physics, 2007, 101, 053718.	1.1	21
65	Molecular Dynamics Study of the Effect of Chemical Functionalization on the Elastic Properties of Graphene Sheets. Journal of Nanoscience and Nanotechnology, 2010, 10, 7070-7074.	0.9	19
66	Effects of Stage, Intercalant Species and Expansion Technique on Exfoliation of Graphite Intercalation Compound into Graphene Sheets. Journal of Nanoscience and Nanotechnology, 2011, 11, 1084-1091.	0.9	19
67	Synthesis, Structure, and Properties of Graphene and Graphene Oxide. , 2015, , 29-94.		18
68	Lithium Bonds Enable Small Biomass Moleculeâ€Based Ionoelastomers with Multiple Functions for Soft Intelligent Electronics. Small, 2022, 18, e2200421.	5.2	18
69	Molecular level controlled fabrication of highly transparent conductive reduced graphene oxide/silver nanowire hybrid films. RSC Advances, 2014, 4, 43270-43277.	1.7	16
70	Effect of gas pressure on current-voltage characteristics of amorphous carbon film/silicon heterojunction. Applied Physics Letters, 2007, 91, .	1.5	15
71	Forward tunneling effect and metal-insulator transition in the BaTiO3 film/Si n-n heterojunction. Applied Physics Letters, 2007, 91, 212105.	1.5	13
72	Effects of N doping and NH2grafting on the mechanical and wrinkling properties of graphene sheets. RSC Advances, 2013, 3, 923-929.	1.7	13

#	Article	IF	CITATIONS
73	Investigation of the interactions between molecules of β-Carotene, Vitamin A and CNTs by MD simulations. Materials Letters, 2009, 63, 319-321.	1.3	12
74	Highly flexible transparent conductive graphene/single-walled carbon nanotube nanocomposite films produced by Langmuir–Blodgett assembly. RSC Advances, 2015, 5, 23650-23657.	1.7	12
75	Production of Fibres from Lunar Soil: Feasibility, Applicability and Future Perspectives. Advanced Fiber Materials, 2022, 4, 923-937.	7.9	12
76	Abnormal current–voltage characteristics and metal–insulator transition of amorphous carbon film/silicon heterojunction. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 371, 318-321.	0.9	7
77	Adsorption in Reversed Order of C ₂ Hydrocarbons on an Ultramicroporous Fluorinated Metalâ€Organic Framework. Angewandte Chemie, 2022, 134, .	1.6	7
78	Fabrication of Graphene-Based Transparent Conducting Thin Films. , 2015, , 95-122.		4
79	Functional Polymeric Materials Based on Cellulose. International Journal of Polymer Science, 2016, 2016, 1-2.	1.2	4
80	Carbon-Based Materials at Nanoscale. Journal of Nanomaterials, 2015, 2015, 1-2.	1.5	2
81	Introduction to Transparent Conductive Films. , 2015, , 1-27.		1
82	Improvement of Electrical Conductivity and Transparency. , 2015, , 123-178.		1