Xiaobo Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5806732/publications.pdf

Version: 2024-02-01

14655 8396 46,047 145 66 147 citations h-index g-index papers 149 149 149 37562 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Nonfluorinated, transparent, and antireflective hydrophobic coating with self-cleaning function. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 634, 127919.	4.7	19
2	Cobalt doped Mo ₅ N ₆ as a noble-metal-free novel cocatalyst for promoting photocatalytic hydrogen production of g-C ₃ N ₄ nanosheets. Materials Chemistry Frontiers, 2022, 6, 718-723.	5.9	10
3	Photocatalytic hydrogen production from seawater under full solar spectrum without sacrificial reagents using TiO2 nanoparticles. Nano Research, 2022, 15, 2013-2022.	10.4	43
4	Unveiling the roles of halogen ions in the surface passivation of CsPbl ₃ perovskite solar cells. Physical Chemistry Chemical Physics, 2022, 24, 10184-10192.	2.8	21
5	A sensitive photodetector: Tuning the electronic structure of the Cu2O/MoS2 heterojunction by controlling the interlayer spacing or electric field. Journal of Materials Research, 2022, 37, 1679-1687.	2.6	1
6	Microwave absorption by carbon-based materials and structures. Journal of Applied Physics, 2022, 131, .	2.5	12
7	Ordered-Porous-Array Polymethyl Methacrylate Films for Radiative Cooling. ACS Applied Materials & amp; Interfaces, 2022, 14, 31277-31284.	8.0	28
8	Icephobicity studies of superhydrophobic coating on aluminium. Surface Engineering, 2021, 37, 1239-1245.	2.2	10
9	3D interconnected Fe-Co-S nanosheets network directly grown on graphene coated nickel foam with enhanced electrochemical performance for asymmetric supercapacitors. Applied Surface Science, 2021, 543, 148747.	6.1	17
10	A simple fabrication of superhydrophobic PVDF/SiO2 coatings and their anti-icing properties. Journal of Materials Research, 2021, 36, 637-645.	2.6	21
11	Research progress on the photocatalytic activation of methane to methanol. Green Chemistry, 2021, 23, 3526-3541.	9.0	39
12	Selective electrocatalytic CO ₂ reduction to acetate on polymeric Cu–L (L = pyridinic N) Tj ETQq0	0 Q rgBT /	Overlock 10 7
13	Facile Fabrication of a Mechanical, Chemical, Thermal, and Longâ€Term Outdoor Durable Fluorineâ€Free Superhydrophobic Coating. Advanced Materials Interfaces, 2021, 8, 2002209.	3.7	26
14	Fluorineâ€Free Superhydrophobic Coating: Facile Fabrication of a Mechanical, Chemical, Thermal, and Longâ€Term Outdoor Durable Fluorineâ€Free Superhydrophobic Coating (Adv. Mater. Interfaces 11/2021). Advanced Materials Interfaces, 2021, 8, 2170060.	3.7	2
15	Effective radiative cooling with ZrO2/PDMS reflective coating. Solar Energy Materials and Solar Cells, 2021, 229, 111129.	6.2	50
16	The room-temperature, ambient-pressure conversion of CO $<$ sub $>$ 2 $<$ /sub $>$ into value-added pharmaceutical products quinazoline-2,4(1 $<$ i $>$ H $<$ /i $>$,3 $<$ i $>$ H $<$ /i $>$)-diones. Physical Chemistry Chemical Physics, 2021, 23, 21130-21138.	2.8	10
17	Emerging Photocatalysts for Hydrogen Evolution. Trends in Chemistry, 2020, 2, 57-70.	8.5	131
18	Dielectric, magnetic, and microwave absorption properties of polyoxometalate-based materials. Journal of Magnetism and Magnetic Materials, 2020, 497, 165974.	2.3	42

#	Article	lF	Citations
19	Self-healing PDMS/SiO2-CaCO3 composite coating for highly efficient protection of building materials. Materials Letters, 2020, 265, 127290.	2.6	21
20	Microwave Absorption of Organic Metal Halide Nanotubes. Advanced Materials Interfaces, 2020, 7, 1901270.	3.7	32
21	Obtaining Strong, Broadband Microwave Absorption of Polyaniline Through Dataâ€Driven Materials Discovery. Advanced Materials Interfaces, 2020, 7, 2000658.	3.7	45
22	Maximizing the microwave absorption performance of polypyrrole by data-driven discovery. Composites Science and Technology, 2020, 199, 108332.	7.8	48
23	Realizing Maximum Microwave Absorption of Poly(3,4-ethylenedioxythiophene) with a Data-Driven Method. ACS Applied Electronic Materials, 2020, 2, 2937-2944.	4.3	24
24	Construction of a multi-interfacial-electron transfer scheme for efficient CO ₂ photoreduction: a case study using CdIn ₂ S ₄ micro-flower spheres modified with Au nanoparticles and reduced graphene oxide. Journal of Materials Chemistry A, 2020, 8, 18707-18714.	10.3	86
25	Photonic TiO2 photoelectrodes for environmental protections: Can color be used as a quick selection indicator for photoelectrocatalytic performance?. Journal of Hazardous Materials, 2020, 398, 122867.	12.4	5
26	A novel two-prong strategy to boost the capacitive performance of commercial carbon cloth. Journal of Alloys and Compounds, 2020, 831, 154615.	5.5	7
27	Data Functionalization for Gas Chromatography in Python. Journal of Chemical Education, 2020, 97, 1172-1175.	2.3	11
28	Interfacial Solar Vapor Generation: Introducing Students to Experimental Procedures and Analysis for Efficiently Harvesting Energy and Generating Vapor at the Air–Water Interface. Journal of Chemical Education, 2020, 97, 1093-1100.	2.3	8
29	Effects of the Dopant Site on the Absorption Properties of CsPb1–xMxl2Br (M = Ge, Sn, Sr, and Cu): A First-Principles Investigation. Journal of Physical Chemistry C, 2020, 124, 6028-6037.	3.1	10
30	Engineering black titanium dioxide by femtosecond laser filament. Applied Surface Science, 2020, 520, 146298.	6.1	10
31	A veil-over-sprout micro-nano PMMA/SiO2 superhydrophobic coating with impressive abrasion, icing, and corrosion resistance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 601, 124998.	4.7	37
32	Recent progress of nanostructured interfacial solar vapor generators. Applied Materials Today, 2019, 17, 45-84.	4.3	70
33	Recent progress of nanomaterials for microwave absorption. Journal of Materiomics, 2019, 5, 503-541.	5 . 7	318
34	Hierarchical K2Mn4O8 nanoflowers: A novel photothermal conversion material for efficient solar vapor generation. Solar Energy Materials and Solar Cells, 2019, 200, 110043.	6.2	18
35	Ni-Bi-S nanosheets/Ni foam as a binder-free high-performance electrode for asymmetric supercapacitors. Chemical Engineering Journal, 2019, 378, 122162.	12.7	24
36	SnS ₂ Nanosheets/Hâ€TiO ₂ Nanotube Arrays as a Typeâ€II Heterojunctioned Photoanode for Photoelectrochemical Water Splitting. ChemSusChem, 2019, 12, 961-967.	6.8	78

3

#	Article	IF	Citations
37	Plasmonic Cu ₉ S ₅ Nanonets for Microwave Absorption. ACS Applied Nano Materials, 2019, 2, 3836-3847.	5.0	64
38	Photocatalytic Hydrogen Production over CdS Nanomaterials: An Interdisciplinary Experiment for Introducing Undergraduate Students to Photocatalysis and Analytical Chemistry. Journal of Chemical Education, 2019, 96, 1224-1229.	2.3	30
39	Ni-based photocatalytic H2-production cocatalysts2. Chinese Journal of Catalysis, 2019, 40, 240-288.	14.0	239
40	Engineering MPx (M = Fe, Co or Ni) interface electron transfer channels for boosting photocatalytic H2 evolution over g-C3N4/MoS2 layered heterojunctions. Applied Catalysis B: Environmental, 2019, 252, 250-259.	20.2	188
41	Broadband antireflective and superhydrophobic coatings for solar cells. Materials Today Energy, 2019, 12, 348-355.	4.7	62
42	Microwave absorption of magnesium/hydrogen-treated titanium dioxide nanoparticles. Nano Materials Science, 2019, 1, 48-59.	8.8	61
43	Evidence of direct Z-scheme g-C3N4/WS2 nanocomposite under interfacial coupling: First-principles study. Journal of Alloys and Compounds, 2019, 788, 1-9.	5 . 5	62
44	Two-dimensional SnS ₂ nanosheets exfoliated from an inorganic–organic hybrid with enhanced photocatalytic activity towards Cr(<scp>vi</scp>) reduction. Inorganic Chemistry Frontiers, 2019, 6, 948-954.	6.0	34
45	Cocatalysts for Selective Photoreduction of CO ₂ into Solar Fuels. Chemical Reviews, 2019, 119, 3962-4179.	47.7	1,591
46	Facile synthesis of a novel WO ₃ /Ag ₂ MoO ₄ particles-on-plate staggered type II heterojunction with improved visible-light photocatalytic activity in removing environmental pollutants. RSC Advances, 2019, 9, 34804-34813.	3.6	21
47	Carbon Nanotube-Supported Cu ₃ P as High-Efficiency and Low-Cost Cocatalysts for Exceptional Semiconductor-Free Photocatalytic H ₂ Evolution. ACS Sustainable Chemistry and Engineering, 2019, 7, 3243-3250.	6.7	96
48	Microwave absorption of aluminum/hydrogen treated titanium dioxide nanoparticles. Journal of Materiomics, 2019, 5, 133-146.	5.7	55
49	A costâ \in effective crosslinked βâ \in eyclodextrin polymer for the rapid and efficient removal of micropollutants from wastewater. Polymer International, 2019, 68, 805-811.	3.1	16
50	Photocatalytic behaviour of anodised titanium using different cathodes. Surface Engineering, 2019, 35, 46-53.	2.2	3
51	libRL: A Python library for the characterization of microwave absorption. Journal of Open Source Software, 2019, 4, 1868.	4.6	11
52	Bridging the g-C ₃ N ₄ Nanosheets and Robust CuS Cocatalysts by Metallic Acetylene Black Interface Mediators for Active and Durable Photocatalytic H ₂ Production. ACS Applied Energy Materials, 2018, 1, 2232-2241.	5.1	88
53	Controllable fabrication of novel pH-, thermo-, and light-responsive supramolecular dendronized copolymers with dual self-assembly behavior. Polymer Chemistry, 2018, 9, 3080-3087.	3.9	3
54	FeP nanoparticles: a new material for microwave absorption. Materials Chemistry Frontiers, 2018, 2, 1119-1125.	5.9	78

#	Article	IF	CITATIONS
55	Noble-metal-free Ni3C cocatalysts decorated CdS nanosheets for high-efficiency visible-light-driven photocatalytic H2 evolution. Applied Catalysis B: Environmental, 2018, 227, 218-228.	20.2	248
56	Bifunctional Cu ₃ P Decorated g-C ₃ N ₄ Nanosheets as a Highly Active and Robust Visible-Light Photocatalyst for H ₂ Production. ACS Sustainable Chemistry and Engineering, 2018, 6, 4026-4036.	6.7	243
57	Controlling electronic properties of MoS ₂ /graphene oxide heterojunctions for enhancing photocatalytic performance: the role of oxygen. Physical Chemistry Chemical Physics, 2018, 20, 1974-1983.	2.8	24
58	Phosphorus-Doped Graphitic Carbon Nitride Nanotubes with Amino-rich Surface for Efficient CO ₂ Capture, Enhanced Photocatalytic Activity, and Product Selectivity. ACS Applied Materials & Diterfaces, 2018, 10, 4001-4009.	8.0	311
59	Co2P nanoparticles for microwave absorption. Materials Today Nano, 2018, 1, 1-7.	4.6	57
60	The Effects of Hydrogenation on Graphitic C ₃ N ₄ Nanosheets for Enhanced Photocatalytic Activity. Particle and Particle Systems Characterization, 2018, 35, 1700038.	2.3	52
61	Graphene-based heterojunction photocatalysts. Applied Surface Science, 2018, 430, 53-107.	6.1	386
62	Enhanced Solar Fuel H ₂ Generation over g-C ₃ N ₄ Nanosheet Photocatalysts by the Synergetic Effect of Noble Metal-Free Co ₂ P Cocatalyst and the Environmental Phosphorylation Strategy. ACS Sustainable Chemistry and Engineering, 2018, 6, 816-826.	6.7	201
63	Facile Synthesis of ZnS/N,S Co-doped Carbon Composite from Zinc Metal Complex for High-Performance Sodium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2018, 10, 704-712.	8.0	108
64	Enhanced electrocatalytic hydrogen evolution activity of nickel foam by low-temperature-oxidation. Journal of Materials Research, 2018, 33, 213-224.	2.6	27
65	A plasmonic interfacial evaporator for high-efficiency solar vapor generation. Sustainable Energy and Fuels, 2018, 2, 2762-2769.	4.9	53
66	Doped, conductive SiO2 nanoparticles for large microwave absorption. Light: Science and Applications, 2018, 7, 87.	16.6	114
67	Copper Sulfide-Based Plasmonic Photothermal Membrane for High-Efficiency Solar Vapor Generation. ACS Applied Materials & Distribution (1988) 10, 35154-35163.	8.0	107
68	Low-Cost Ni ₃ B/Ni(OH) ₂ as an Ecofriendly Hybrid Cocatalyst for Remarkably Boosting Photocatalytic H ₂ Production over g-C ₃ N ₄ Nanosheets. ACS Sustainable Chemistry and Engineering, 2018, 6, 13140-13150.	6.7	131
69	Multi-functional Ni ₃ C cocatalyst/g-C ₃ N ₄ nanoheterojunctions for robust photocatalytic H ₂ evolution under visible light. Journal of Materials Chemistry A, 2018, 6, 13110-13122.	10.3	241
70	CuS nanoflowers/semipermeable collodion membrane composite for high-efficiency solar vapor generation. Materials Today Energy, 2018, 9, 285-294.	4.7	60
71	Photoexcited Charge Transport and Accumulation in Anatase TiO ₂ . ACS Applied Energy Materials, 2018, 1, 4313-4320.	5.1	56
72	Synthesis of porous ZnS/ZnSe nanosheets for enhanced visible light photocatalytic activity. Journal of Materials Science: Materials in Electronics, 2018, 29, 11605-11612.	2.2	15

#	Article	IF	CITATIONS
73	New Understanding on Enhanced Photocatalytic Activity of g-C ₃ N ₄ /BiPO ₄ Heterojunctions by Effective Interfacial Coupling. ACS Applied Nano Materials, 2018, 1, 5507-5515.	5.0	52
74	A review on g-C 3 N 4 -based photocatalysts. Applied Surface Science, 2017, 391, 72-123.	6.1	2,318
75	n/n junctioned g-C ₃ N ₄ for enhanced photocatalytic H ₂ generation. Sustainable Energy and Fuels, 2017, 1, 317-323.	4.9	96
76	Fabricating the Robust g-C ₃ N ₄ Nanosheets/Carbons/NiS Multiple Heterojunctions for Enhanced Photocatalytic H ₂ Generation: An Insight into the Trifunctional Roles of Nanocarbons. ACS Sustainable Chemistry and Engineering, 2017, 5, 2224-2236.	6.7	214
77	A Novel Green TiO ₂ Photocatalyst with a Surface Chargeâ€Transfer Complex of Ti and Hydrazine Groups. Chemistry - A European Journal, 2017, 23, 5345-5351.	3.3	25
78	Earth-abundant WC nanoparticles as an active noble-metal-free co-catalyst for the highly boosted photocatalytic H ₂ production over g-C ₃ N ₄ nanosheets under visible light. Catalysis Science and Technology, 2017, 7, 1193-1202.	4.1	114
79	Synthesis and Properties of Hydrogenated Black TiO ₂ Nanomaterials., 2017,, 5-32.		2
80	Graphene-Embedded Co ₃ O ₄ Rose-Spheres for Enhanced Performance in Lithium Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 9662-9668.	8.0	133
81	Graphitic-C ₃ N ₄ nanosheets: synergistic effects of hydrogenation and n/n junctions for enhanced photocatalytic activities. Dalton Transactions, 2017, 46, 10641-10649.	3.3	53
82	Broad range energy absorption enabled by hydrogenated TiO ₂ nanosheets: from optical to infrared and microwave. Journal of Materials Chemistry C, 2017, 5, 4645-4653.	5 . 5	64
83	Synthesis of porous ZnS, ZnO and ZnS/ZnO nanosheets and their photocatalytic properties. RSC Advances, 2017, 7, 30956-30962.	3.6	85
84	Constructing Multifunctional Metallic Ni Interface Layers in the g-C ₃ N ₄ Nanosheets/Amorphous NiS Heterojunctions for Efficient Photocatalytic H ₂ Generation. ACS Applied Materials & District Photocatalytic H ₂ Generation.	8.0	319
85	Titanium dioxide nanomaterials for photocatalysis. Journal Physics D: Applied Physics, 2017, 50, 193003.	2.8	37
86	Synthesis of ZnSe microdisks and nanobelts and their visible-light photocatalytic properties. Journal of Materials Science, 2017, 52, 3821-3830.	3.7	22
87	Improving the activity of Co _x P nanoparticles for the electrochemical hydrogen evolution by hydrogenation. Sustainable Energy and Fuels, 2017, 1, 62-68.	4.9	41
88	Fast and Large-Scale Anodizing Synthesis of Pine-Cone TiO2 for Solar-Driven Photocatalysis. Catalysts, 2017, 7, 229.	3 . 5	11
89	Enhanced charge storage of Li3FeF6 with carbon nanotubes for lithium-ion batteries. RSC Advances, 2016, 6, 113283-113288.	3.6	5
90	Modifying oxide nanomaterials' properties by hydrogenation. MRS Communications, 2016, 6, 192-203.	1.8	15

#	Article	IF	Citations
91	Tertiary butyl hydroquinone as a novel additive for SEI film formation in lithium-ion batteries. RSC Advances, 2016, 6, 42885-42891.	3.6	13
92	FeNi ₃ /NiFeO <i>_x</i> Nanohybrids as Highly Efficient Bifunctional Electrocatalysts for Overall Water Splitting. Advanced Materials Interfaces, 2016, 3, 1600368.	3.7	84
93	Black Titanium Dioxide (TiO ₂) Nanomaterials. World Scientific Series in Nanoscience and Nanotechnology, 2016, , 1-26.	0.1	2
94	Bismuth nanodendrites as a high performance electrocatalyst for selective conversion of CO ₂ to formate. Journal of Materials Chemistry A, 2016, 4, 13746-13753.	10.3	160
95	Electrochemical Activity of Iron Phosphide Nanoparticles in Hydrogen Evolution Reaction. ACS Catalysis, 2016, 6, 5441-5448.	11.2	197
96	One-pot, large-scale, simple synthesis of Co _x P nanocatalysts for electrochemical hydrogen evolution. Journal of Materials Chemistry A, 2016, 4, 13011-13016.	10.3	59
97	Ag nanoparticles/hematite mesocrystals superstructure composite: a facile synthesis and enhanced heterogeneous photo-Fenton activity. Catalysis Science and Technology, 2016, 6, 4184-4191.	4.1	37
98	From Water Oxidation to Reduction: Transformation from Ni _{<i>x</i>} Co _{3–<i>x</i>} O ₄ Nanowires to NiCo/NiCoO _{<i>x</i>} Heterostructures. ACS Applied Materials & Amp; Interfaces, 2016, 8, 3208-3214.	8.0	143
99	A hybrid electrolyzer splits water at 0.8 V at room temperature. Nano Energy, 2016, 19, 138-144.	16.0	23
100	Partially amorphized MnMoO ₄ for highly efficient energy storage and the hydrogen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 3683-3688.	10.3	86
101	Ag ₂ Mo ₃ O ₁₀ Nanorods Decorated with Ag ₂ S Nanoparticles: Visibleâ€Light Photocatalytic Activity, Photostability, and Charge Transfer. Chemistry - A European Journal, 2015, 21, 18711-18716.	3.3	22
102	TiO ₂ Nanomaterials as Anode Materials for Lithiumâ€ion Rechargeable Batteries. Energy Technology, 2015, 3, 801-814.	3.8	79
103	The Influence of Reaction Temperature on the Formation and Photocatalytic Hydrogen Generation of (001) Faceted TiO ₂ Nanosheets. ChemNanoMat, 2015, 1, 270-275.	2.8	13
104	Effect of hydrogenation on the microwave absorption properties of BaTiO ₃ nanoparticles. Journal of Materials Chemistry A, 2015, 3, 12550-12556.	10.3	108
105	Black titanium dioxide (TiO ₂) nanomaterials. Chemical Society Reviews, 2015, 44, 1861-1885.	38.1	1,148
106	Strong Microwave Absorption of Hydrogenated Wide Bandgap Semiconductor Nanoparticles. ACS Applied Materials & Diterfaces, 2015, 7, 10407-10413.	8.0	104
107	Crystalline/amorphous Ni/NiO core/shell nanosheets as highly active electrocatalysts for hydrogen evolution reaction. Journal of Power Sources, 2015, 300, 336-343.	7.8	251
108	Three-Dimensional Crystalline/Amorphous Co/Co ₃ O ₄ Core/Shell Nanosheets as Efficient Electrocatalysts for the Hydrogen Evolution Reaction. Nano Letters, 2015, 15, 6015-6021.	9.1	485

#	Article	IF	Citations
109	Ultrathin tungsten oxide nanowires: oleylamine assisted nonhydrolytic growth, oxygen vacancies and good photocatalytic properties. RSC Advances, 2015, 5, 77423-77428.	3.6	96
110	Engineering heterogeneous semiconductors for solar water splitting. Journal of Materials Chemistry A, 2015, 3, 2485-2534.	10.3	1,609
111	Enhancing microwave absorption of TiO ₂ nanocrystals via hydrogenation. Journal of Materials Research, 2014, 29, 2198-2210.	2.6	78
112	Lithiumâ€lon Battery Performance of (001)â€Faceted TiO ₂ Nanosheets vs. Spherical TiO ₂ Nanoparticles. Energy Technology, 2014, 2, 376-382.	3.8	27
113	Facile Synthesis of [Cu(SCH ₃)] _{â^ž} Nanowires with High Charge Mobility. ChemPlusChem, 2014, 79, 559-563.	2.8	11
114	Influence of the Amount of Hydrogen Fluoride on the Formation of (001)â€Faceted Titanium Dioxide Nanosheets and Their Photocatalytic Hydrogen Generation Performance. ChemPlusChem, 2014, 79, 1159-1166.	2.8	24
115	Vacuum-treated titanium dioxide nanocrystals: Optical properties, surface disorder, oxygen vacancy, and photocatalytic activities. Catalysis Today, 2014, 225, 2-9.	4.4	162
116	Synthesis and photoactivity of nanostructured CdS–TiO2 composite catalysts. Catalysis Today, 2014, 225, 64-73.	4.4	159
117	Structural evolution from TiO2nanoparticles to nanosheets and their photocatalytic performance in hydrogen generation and environmental pollution removal. RSC Advances, 2014, 4, 16146.	3.6	28
118	Hydrogenated black ZnO nanoparticles with enhanced photocatalytic performance. RSC Advances, 2014, 4, 41654-41658.	3.6	81
119	Titanium Dioxide-Based Nanomaterials for Photocatalytic Fuel Generations. Chemical Reviews, 2014, 114, 9987-10043.	47.7	2,096
120	Introduction: Titanium Dioxide (TiO ₂) Nanomaterials. Chemical Reviews, 2014, 114, 9281-9282.	47.7	370
121	Titanium Dioxide Nanomaterials: Self-Structural Modifications. Chemical Reviews, 2014, 114, 9890-9918.	47.7	447
122	Photocatalytic Hydrogen Generation from Pure Water using Silicon Carbide Nanoparticles. Energy Technology, 2014, 2, 183-187.	3.8	33
123	Properties of Disorder-Engineered Black Titanium Dioxide Nanoparticles through Hydrogenation. Scientific Reports, 2013, 3, 1510.	3.3	317
124	A Facile Method to Improve the Photocatalytic and Lithiumâ€ion Rechargeable Battery Performance of TiO ₂ Nanocrystals. Advanced Energy Materials, 2013, 3, 1516-1523.	19.5	166
125	Hydrogenated surface disorder enhances lithium ion battery performance. Nano Energy, 2013, 2, 826-835.	16.0	95
126	Asymmetric Lattice Vibrational Characteristics of Rutile TiO ₂ as Revealed by Laser Power Dependent Raman Spectroscopy. Journal of Physical Chemistry C, 2013, 117, 24015-24022.	3.1	155

#	Article	IF	Citations
127	Femtosecond timeâ€resolved hot carrier energy distributions of photoexcited semiconductor quantum dots. Annalen Der Physik, 2013, 525, 43-48.	2.4	7
128	Revealing the structural properties of hydrogenated black TiO2 nanocrystals. Journal of Materials Chemistry A, 2013, 1, 2983.	10.3	172
129	Preparation of Uncapped CdSe x Te1â^'x Nanocrystals with Strong Near-IR Tunable Absorption. Journal of Electronic Materials, 2013, 42, 3373-3378.	2.2	7
130	Hydrogenation and Disorder in Engineered Black <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>TiO</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> . Physical Review Letters, 2013, 111, 065505.	7.8	199
131	Hydrogenated TiO ₂ Nanocrystals: A Novel Microwave Absorbing Material. Advanced Materials, 2013, 25, 6905-6910.	21.0	507
132	Formation of TiO ₂ nanomaterials via titanium ethylene glycolide decomposition. Journal of Materials Research, 2013, 28, 326-332.	2.6	14
133	Nanomaterials for renewable energy production and storage. Chemical Society Reviews, 2012, 41, 7909.	38.1	856
134	Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals. Science, 2011, 331, 746-750.	12.6	5,359
135	Semiconductor-based Photocatalytic Hydrogen Generation. Chemical Reviews, 2010, 110, 6503-6570.	47.7	6,836
136	The Electronic Origin of the Visible-Light Absorption Properties of C-, N- and S-Doped TiO (sub) 2 (sub) Nanomaterials. Journal of the American Chemical Society, 2008, 130, 5018-5019.	13.7	1,119
137	Titanium Dioxide Nanomaterials:  Synthesis, Properties, Modifications, and Applications. Chemical Reviews, 2007, 107, 2891-2959.	47.7	9,393
138	A Simple Parallel Photochemical Reactor for Photodecomposition Studies. Journal of Chemical Education, 2006, 83, 265.	2.3	18
139	Synthesis of Titanium Dioxide (TiO ₂) Nanomaterials. Journal of Nanoscience and Nanotechnology, 2006, 6, 906-925.	0.9	173
140	Doped Semiconductor Nanomaterials. Journal of Nanoscience and Nanotechnology, 2005, 5, 1408-1420.	0.9	79
141	Investigation of the Crystallization Process in 2 nm CdSe Quantum Dots. Journal of the American Chemical Society, 2005, 127, 4372-4375.	13.7	112
142	Photoelectron Spectroscopic Investigation of Nitrogen-Doped Titania Nanoparticles. Journal of Physical Chemistry B, 2004, 108, 15446-15449.	2.6	625
143	Enhanced Nitrogen Doping in TiO2 Nanoparticles. Nano Letters, 2003, 3, 1049-1051.	9.1	1,199
144	Evaluation of the photoinduced electron relaxation dynamics of Cu1.8S quantum dots. Physical Chemistry Chemical Physics, 2003, 5, 1091-1095.	2.8	94

#	Article	IF	CITATIONS
145	Coherency Strain Effects on the Optical Response of Core/Shell Heteronanostructures. Nano Letters, 2003, 3, 799-803.	9.1	194