Maximilian Fichtner

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5806587/maximilian-fichtner-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

88 10,838 56 278 h-index g-index citations papers 6.77 300 7.2 12,444 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
278	Dual Role of Mo S in Polysulfide Conversion and Shuttle for Mg-S Batteries <i>Advanced Science</i> , 2022 , e2104605	13.6	7
277	Visualization of structural changes and degradation of porphyrin-based battery electrodes. <i>Journal of Power Sources</i> , 2022 , 522, 231002	8.9	1
276	Structural and Electrochemical Insights from the Fluorination of Disordered Mn-Based Rock Salt Cathode Materials. <i>Chemistry of Materials</i> , 2022 , 34, 2268-2281	9.6	3
275	Designing Gel Polymer Electrolyte with Synergetic Properties for Rechargeable Magnesium Batteries. <i>Energy Storage Materials</i> , 2022 , 48, 155-163	19.4	3
274	Development of Magnesium Borate Electrolytes: Explaining the Success of Mg[B(hfip)4]2 Salt. <i>Energy Storage Materials</i> , 2021 , 45, 1133-1133	19.4	7
273	Mitigating self-discharge and improving the performance of MgB battery in Mg[B(hfip)4]2 electrolyte with a protective interlayer. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 25150-25159	13	3
272	The metamorphosis of rechargeable magnesium batteries. <i>Joule</i> , 2021 , 5, 581-617	27.8	32
271	A Self-Conditioned Metalloporphyrin as a Highly Stable Cathode for Fast Rechargeable Magnesium Batteries. <i>ChemSusChem</i> , 2021 , 14, 1840-1846	8.3	8
270	Polyoxometalate Modified Separator for Performance Enhancement of MagnesiumBulfur Batteries. <i>Advanced Functional Materials</i> , 2021 , 31, 2100868	15.6	10
269	Degradation Effects in MetalBulfur Batteries. ACS Applied Energy Materials, 2021, 4, 2365-2376	6.1	7
268	Magnesium-Sulfur Batteries: Polyoxometalate Modified Separator for Performance Enhancement of MagnesiumBulfur Batteries (Adv. Funct. Mater. 26/2021). <i>Advanced Functional Materials</i> , 2021 , 31, 2170189	15.6	1
267	Establishing a Stable Anode-Electrolyte Interface in Mg Batteries by Electrolyte Additive. <i>ACS Applied Materials & Applied & </i>	9.5	13
266	Recent developments and future perspectives of anionic batteries. <i>Journal of Power Sources</i> , 2021 , 481, 228877	8.9	30
265	Perspective on ultramicroporous carbon as sulphur host for LiB batteries. <i>Journal of Energy Chemistry</i> , 2021 , 59, 242-256	12	19
264	Biowaste eggshells as efficient electrodes for energy storage 2021 , 475-495		
263	Performance Study of MXene/Carbon Nanotube Composites for Current Collector- and Binder-Free Mg-S Batteries. <i>ChemSusChem</i> , 2021 , 14, 1864-1873	8.3	10
262	Surface Engineering of a Mg Electrode via a New Additive to Reduce Overpotential. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 37044-37051	9.5	5

(2020-2021)

261	Modeling of Electron-Transfer Kinetics in Magnesium Electrolytes: Influence of the Solvent on the Battery Performance. <i>ChemSusChem</i> , 2021 , 14, 4820-4835	8.3	3
260	A review on current anode materials for rechargeable Mg batteries. <i>Journal of Magnesium and Alloys</i> , 2020 , 8, 963-979	8.8	20
259	Stabilization of Li-Rich Disordered Rocksalt Oxyfluoride Cathodes by Particle Surface Modification. <i>ACS Applied Energy Materials</i> , 2020 , 3, 5937-5948	6.1	10
258	Pseudo-ternary LiBHILiClIPS system as structurally disordered bulk electrolyte for all-solid-state lithium batteries. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 13872-13879	3.6	12
257	Influence of Electrolyte Additives on the Degradation of Li2VO2F Li-Rich Cathodes. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 12956-12967	3.8	3
256	Insights into Structural Transformations in the Local Structure of LiVOF Using X-ray Diffraction and Total Scattering: Amorphization and Recrystallization. <i>ACS Applied Materials & Diffraction and Recrystallization</i> , 2020, 12, 27010-27016	9.5	8
255	Modeling of Ion Agglomeration in Magnesium Electrolytes and its Impacts on Battery Performance. <i>ChemSusChem</i> , 2020 , 13, 3599-3604	8.3	9
254	Copper Porphyrin as a Stable Cathode for High-Performance Rechargeable Potassium Organic Batteries. <i>ChemSusChem</i> , 2020 , 13, 2286-2294	8.3	31
253	Multi-Electron Reactions Enabled by Anion-Based Redox Chemistry for High-Energy Multivalent Rechargeable Batteries. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 11483-11490	16.4	47
252	Multi-Electron Reactions Enabled by Anion-Based Redox Chemistry for High-Energy Multivalent Rechargeable Batteries. <i>Angewandte Chemie</i> , 2020 , 132, 11580-11587	3.6	5
251	Understanding the Origin of Higher Capacity for Ni-Based Disordered Rock-Salt Cathodes. <i>Chemistry of Materials</i> , 2020 , 32, 3447-3461	9.6	8
250	Alkali metal insertion into hard carbon Ithe full picture. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 1420!	5-1 <u>4</u> 21:	3 11
249	Overcoming the Interfacial Limitations Imposed by the Solid-Solid Interface in Solid-State Batteries Using Ionic Liquid-Based Interlayers. <i>Small</i> , 2020 , 16, e2000279	11	41
248	First results from in situ transmission electron microscopy studies of all-solid-state fluoride ion batteries. <i>Journal of Power Sources</i> , 2020 , 466, 228283	8.9	9
247	Exploits, advances and challenges benefiting beyond Li-ion battery technologies. <i>Journal of Alloys and Compounds</i> , 2020 , 817, 153261	5.7	79
246	Effects of Ball Milling and TiF3 Addition on the Dehydrogenation Temperature of Ca(BH4)2 Polymorphs. <i>Energies</i> , 2020 , 13, 4828	3.1	1
245	Metal (boro-) hydrides for high energy density storage and relevant emerging technologies. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 33687-33730	6.7	28
244	CalciumBulfur Batteries: Rechargeable CalciumBulfur Batteries Enabled by an Efficient Borate-Based Electrolyte (Small 39/2020). <i>Small</i> , 2020 , 16, 2070216	11	2

243	Electrochemical and compositional characterization of solid interphase layers in an interface-modified solid-state LiBulfur battery. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 16451-16462	13	17
242	Superoxide formation in Li2VO2F cathode material (a) combined computational and experimental investigation of anionic redox activity. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 16551-16559	13	9
241	Short-range ordering in the Li-rich disordered rock salt cathode material Li2VO2F revealed by Raman spectroscopy. <i>Journal of Raman Spectroscopy</i> , 2020 , 51, 2095-2101	2.3	6
240	Electrochemical synthesis of carbon-metal fluoride nanocomposites as cathode materials for lithium batteries. <i>Electrochemistry Communications</i> , 2020 , 120, 106846	5.1	8
239	Investigation on the formation of Mg metal anode/electrolyte interfaces in Mg/S batteries with electrolyte additives. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 22998-23010	13	21
238	Insights into Self-Discharge of Lithiumland MagnesiumBulfur Batteries. <i>ACS Applied Energy Materials</i> , 2020 , 3, 8457-8474	6.1	14
237	Rechargeable Calcium-Sulfur Batteries Enabled by an Efficient Borate-Based Electrolyte. <i>Small</i> , 2020 , 16, e2001806	11	12
236	Halogenid-basierte Materialien und Chemie filwiederaufladbare Batterien. <i>Angewandte Chemie</i> , 2020 , 132, 5954-6004	3.6	4
235	Halide-Based Materials and Chemistry for Rechargeable Batteries. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 5902-5949	16.4	63
234	Improved cycling stability in high-capacity Li-rich vanadium containing disordered rock salt oxyfluoride cathodes. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 21244-21253	13	23
233	Suppressing Dissolution of Vanadium from Cation-Disordered Li2\(\mathbb{U}\)O2F via a Concentrated Electrolyte Approach. <i>Chemistry of Materials</i> , 2019 , 31, 7941-7950	9.6	17
232	Calcined chicken eggshell electrode for battery and supercapacitor applications <i>RSC Advances</i> , 2019 , 9, 26981-26995	3.7	33
231	Unlocking the Potential of Fluoride-Based Solid Electrolytes for Solid-State Lithium Batteries. <i>ACS Applied Energy Materials</i> , 2019 , 2, 7196-7203	6.1	21
230	Design and Tuning of the Electrochemical Properties of Vanadium-Based Cation-Disordered Rock-Salt Oxide Positive Electrode Material for Lithium-Ion Batteries. <i>ACS Applied Materials & Interfaces</i> , 2019 , 11, 39848-39858	9.5	15
229	Introducing Interlayer Electrolytes: Toward Room-Temperature High-Potential Solid-State Rechargeable Fluoride Ion Batteries. <i>ACS Applied Energy Materials</i> , 2019 , 2, 1553-1562	6.1	22
228	A quasielastic and inelastic neutron scattering study of the alkaline and alkaline-earth borohydrides LiBH and Mg(BH) and the mixture LiBH + Mg(BH). <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 718-72	8 ^{3.6}	12
227	Oxygen Activity in Li-Rich Disordered Rock-Salt Oxide and the Influence of LiNbO3 Surface Modification on the Electrochemical Performance. <i>Chemistry of Materials</i> , 2019 , 31, 4330-4340	9.6	23
226	Interface in Solid-State Lithium Battery: Challenges, Progress, and Outlook. <i>ACS Applied Materials</i> & Samp; Interfaces, 2019 , 11, 22029-22050	9.5	127

(2018-2019)

225	Degradation Mechanisms in Li2VO2F Li-Rich Disordered Rock-Salt Cathodes. <i>Chemistry of Materials</i> , 2019 , 31, 6084-6096	9.6	19
224	Toward Improving the Areal Energy Density of LithiumBulfur Batteries with Ultramicroporous CarbonBulfur Composite Electrodes. <i>Energy Technology</i> , 2019 , 7, 1900183	3.5	3
223	Monitoring the Electrochemical Energy Storage Processes of an Organic Full Rechargeable Battery via Operando Raman Spectroscopy: A Mechanistic Study. <i>Chemistry of Materials</i> , 2019 , 31, 3239-3247	9.6	24
222	Understanding Structure Changes during Cycling of MoS2-based Mg Batteries. <i>Microscopy and Microanalysis</i> , 2019 , 25, 2042-2043	0.5	
221	Towards stable and efficient electrolytes for room-temperature rechargeable calcium batteries. Energy and Environmental Science, 2019 , 12, 3496-3501	35.4	115
220	A Lithium-Free Energy-Storage Device Based on an Alkyne-Substituted-Porphyrin Complex. <i>ChemSusChem</i> , 2019 , 12, 3737-3741	8.3	15
219	New Organic Electrode Materials for Ultrafast Electrochemical Energy Storage. <i>Advanced Materials</i> , 2019 , 31, e1806599	24	44
218	Insights into the electrochemical processes of rechargeable magnesium Bulfur batteries with a new cathode design. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 25490-25502	13	33
217	Differentiating Molecular and Solid-State Vanadium Oxides as Active Materials in Battery Electrodes. <i>ChemElectroChem</i> , 2019 , 6, 398-403	4.3	15
216	Role of hydrogen tanks in the life cycle assessment of fuel cell-based auxiliary power units. <i>Applied Energy</i> , 2018 , 215, 1-12	10.7	19
215	Reversible Delithiation of Disordered Rock Salt LiVO2. <i>ChemElectroChem</i> , 2018 , 5, 1484-1490	4.3	21
214	Polysulfides Formation in Different Electrolytes from the Perspective of X-ray Absorption Spectroscopy. <i>Journal of the Electrochemical Society</i> , 2018 , 165, A5014-A5019	3.9	31
213	Performance Improvement of V-Fe-Cr-Ti Solid State Hydrogen Storage Materials in Impure Hydrogen Gas. <i>ACS Applied Materials & amp; Interfaces</i> , 2018 , 10, 1662-1671	9.5	8
212	Toward Highly Reversible MagnesiumBulfur Batteries with Efficient and Practical Mg[B(hfip)4]2Electrolyte. <i>ACS Energy Letters</i> , 2018 , 3, 2005-2013	20.1	149
211	Synthesis of Fast Fluoride-Ion-Conductive Fluorite-Type BaSb F (0.1 lk lb.4): A Potential Solid Electrolyte for Fluoride-Ion Batteries. <i>ACS Applied Materials & Electrolyte for Fluoride-Ion Batteries</i> . <i>ACS Applied Materials & Electrolyte for Fluoride-Ion Batteries</i> .	9.5	25
21 0	Room-Temperature, Rechargeable Solid-State Fluoride-Ion Batteries. <i>ACS Applied Energy Materials</i> , 2018 , 1, 4766-4775	6.1	48
209	Design of Nickel-Based Cation-Disordered Rock-Salt Oxides: The Effect of Transition Metal (M = V, Ti, Zr) Substitution in LiNiMO Binary Systems. <i>ACS Applied Materials & Discrete Materials & Discret</i>	1964	25
208	Beyond Intercalation Chemistry for Rechargeable Mg Batteries: A Short Review and Perspective. <i>Frontiers in Chemistry</i> , 2018 , 6, 656	5	55

207	Electrochemical performance of all solid-state fluoride-ion batteries based on thin-film electrolyte using alternative conductive additives and anodes. <i>Journal of Solid State Electrochemistry</i> , 2018 , 22, 997	7- 10 06	24
206	Bio-waste chicken eggshells to store energy. <i>Dalton Transactions</i> , 2018 , 47, 16828-16834	4.3	27
205	Facile synthesis of C-FeF nanocomposites from CFx: influence of carbon precursor on reversible lithium storage <i>RSC Advances</i> , 2018 , 8, 36802-36811	3.7	10
204	Fast kinetics of multivalent intercalation chemistry enabled by solvated magnesium-ions into self-established metallic layered materials. <i>Nature Communications</i> , 2018 , 9, 5115	17.4	73
203	Insight into Sodium Insertion and the Storage Mechanism in Hard Carbon. <i>ACS Energy Letters</i> , 2018 , 3, 2851-2857	20.1	89
202	Insight into Sulfur Confined in Ultramicroporous Carbon. ACS Omega, 2018, 3, 11290-11299	3.9	27
201	Performance boost for primary magnesium cells using iron complexing agents as electrolyte additives. <i>Scientific Reports</i> , 2018 , 8, 7578	4.9	28
200	SSH2S: Hydrogen storage in complex hydrides for an auxiliary power unit based on high temperature proton exchange membrane fuel cells. <i>Journal of Power Sources</i> , 2017 , 342, 853-860	8.9	37
199	Interlayer-Expanded Vanadium Oxychloride as an Electrode Material for Magnesium-Based Batteries. <i>ChemElectroChem</i> , 2017 , 4, 738-745	4.3	20
198	CuF2 as Reversible Cathode for Fluoride Ion Batteries. <i>Advanced Functional Materials</i> , 2017 , 27, 170105	115.6	81
197	Study of all solid-state rechargeable fluoride ion batteries based on thin-film electrolyte. <i>Journal of Solid State Electrochemistry</i> , 2017 , 21, 1243-1251	2.6	23
196	A Porphyrin Complex as a Self-Conditioned Electrode Material for High-Performance Energy Storage. <i>Angewandte Chemie</i> , 2017 , 129, 10477-10482	3.6	21
195	A Porphyrin Complex as a Self-Conditioned Electrode Material for High-Performance Energy Storage. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 10341-10346	16.4	57
194	Preparation of Li-Mg-N-H hydrogen storage materials for an auxiliary power unit. <i>International Journal of Hydrogen Energy</i> , 2017 , 42, 17144-17148	6.7	9
193	Conductivity Optimization of Tysonite-type LaBaF Solid Electrolytes for Advanced Fluoride Ion Battery. <i>ACS Applied Materials & Description</i> (1997) 100 (1	9.5	36
192	A new class of non-corrosive, highly efficient electrolytes for rechargeable magnesium batteries. Journal of Materials Chemistry A, 2017 , 5, 10815-10820	13	219
191	Lithium-Magnesium Hybrid Battery with Vanadium Oxychloride as Electrode Material. <i>ChemistrySelect</i> , 2017 , 2, 7558-7564	1.8	6
190	A novel conversion anode composite for lithium ion batteries based on MnF2/carbon nanotubes with hierarchical structure. <i>Journal of Alloys and Compounds</i> , 2017 , 724, 1101-1108	5.7	11

(2016-2017)

189	Study of the structural, thermodynamic and cyclic effects of vanadium and titanium substitution in laves-phase AB2 hydrogen storage alloys. <i>International Journal of Hydrogen Energy</i> , 2017 , 42, 20103-207	190	31
188	Konzept zur chemischen WEmespeicherung mit fl\(\bar{b}\)sigen organischen Hydriden. Chemie-Ingenieur-Technik, 2017 , 89, 341-345	0.8	2
187	In situ TEM studies of micron-sized all-solid-state fluoride ion batteries: Preparation, prospects, and challenges. <i>Microscopy Research and Technique</i> , 2016 , 79, 615-24	2.8	23
186	Phase-structural transformations in a metal hydride battery anode La1.5Nd0.5MgNi9 alloy and its electrochemical performance. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 9954-9967	6.7	28
185	VOCl as a Cathode for Rechargeable Chloride Ion Batteries. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 4285-90	16.4	52
184	Development of a water based process for stable conversion cathodes on the basis of FeF3. <i>Journal of Power Sources</i> , 2016 , 313, 213-222	8.9	34
183	Mechanical Milling Assisted Synthesis and Electrochemical Performance of High Capacity LiFeBO3 for Lithium Batteries. <i>ACS Applied Materials & Empty Interfaces</i> , 2016 , 8, 2166-72	9.5	14
182	Fluoride ion batteries: Theoretical performance, safety, toxicity, and a combinatorial screening of new electrodes. <i>Journal of Fluorine Chemistry</i> , 2016 , 182, 76-90	2.1	136
181	Performance study of magnesium-sulfur battery using a graphene based sulfur composite cathode electrode and a non-nucleophilic Mg electrolyte. <i>Nanoscale</i> , 2016 , 8, 3296-306	7.7	190
180	Ionic Conductivity of Nanocrystalline Metal Fluorides 2016 , 449-463		5
180	Ionic Conductivity of Nanocrystalline Metal Fluorides 2016 , 449-463 VOCl as a Cathode for Rechargeable Chloride Ion Batteries. <i>Angewandte Chemie</i> , 2016 , 128, 4357-4362	3.6	5
		3.6 3.5	
179	VOCl as a Cathode for Rechargeable Chloride Ion Batteries. <i>Angewandte Chemie</i> , 2016 , 128, 4357-4362 Facile Synthesis of Carbon Metal Fluoride Nanocomposites for Lithium-Ion Batteries. <i>Energy</i>		14
179 178	VOCl as a Cathode for Rechargeable Chloride Ion Batteries. <i>Angewandte Chemie</i> , 2016 , 128, 4357-4362 Facile Synthesis of CarbonMetal Fluoride Nanocomposites for Lithium-Ion Batteries. <i>Energy Technology</i> , 2016 , 4, 201-211 Vanadium Oxyfluoride/Few-Layer Graphene Composite as a High-Performance Cathode Material	3.5	14
179 178 177	VOCl as a Cathode for Rechargeable Chloride Ion Batteries. <i>Angewandte Chemie</i> , 2016 , 128, 4357-4362 Facile Synthesis of CarbonMetal Fluoride Nanocomposites for Lithium-Ion Batteries. <i>Energy Technology</i> , 2016 , 4, 201-211 Vanadium Oxyfluoride/Few-Layer Graphene Composite as a High-Performance Cathode Material for Lithium Batteries. <i>Inorganic Chemistry</i> , 2016 , 55, 3789-96 Thermochemical Energy Storage through De/Hydrogenation of Organic Liquids: Reactions of	3.5 5.1	14 11 15
179 178 177	VOCl as a Cathode for Rechargeable Chloride Ion Batteries. <i>Angewandte Chemie</i> , 2016 , 128, 4357-4362 Facile Synthesis of CarbonMetal Fluoride Nanocomposites for Lithium-Ion Batteries. <i>Energy Technology</i> , 2016 , 4, 201-211 Vanadium Oxyfluoride/Few-Layer Graphene Composite as a High-Performance Cathode Material for Lithium Batteries. <i>Inorganic Chemistry</i> , 2016 , 55, 3789-96 Thermochemical Energy Storage through De/Hydrogenation of Organic Liquids: Reactions of Organic Liquids on Metal Hydrides. <i>ACS Applied Materials & Development of Development Devel</i>	3.5 5.1 9.5	14 11 15
179 178 177 176	VOCl as a Cathode for Rechargeable Chloride Ion Batteries. <i>Angewandte Chemie</i> , 2016 , 128, 4357-4362 Facile Synthesis of CarbonMetal Fluoride Nanocomposites for Lithium-Ion Batteries. <i>Energy Technology</i> , 2016 , 4, 201-211 Vanadium Oxyfluoride/Few-Layer Graphene Composite as a High-Performance Cathode Material for Lithium Batteries. <i>Inorganic Chemistry</i> , 2016 , 55, 3789-96 Thermochemical Energy Storage through De/Hydrogenation of Organic Liquids: Reactions of Organic Liquids on Metal Hydrides. <i>ACS Applied Materials & Description of Alloys and Compounds</i> , 2016 , 684, 733-738 Selenium and selenium-sulfur cathode materials for high-energy rechargeable magnesium	3.5 5.1 9.5 5.7	14 11 15 10

171	Nitrogen Rich Hierarchically Organized Porous Carbon/Sulfur Composite Cathode Electrode for High Performance Li/S Battery: A Mechanistic Investigation by Operando Spectroscopic Studies. Advanced Materials Interfaces, 2016 , 3, 1600372	4.6	27
170	Fluoride Cathodes for Secondary Batteries 2015 , 51-76		7
169	Cost reduction possibilities of vanadium-based solid solutions Microstructural, thermodynamic, cyclic and environmental effects of ferrovanadium substitution. <i>Journal of Alloys and Compounds</i> , 2015 , 648, 1024-1030	5.7	18
168	On the rehydrogenation of decomposed Ca(BH4)2. Journal of Alloys and Compounds, 2015, 632, 800-80	4 5.7	10
167	Fluorescence X-ray Absorption Study of ScCl3-Doped Sodium Alanate. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 15810-15815	3.8	2
166	Single step transformation of sulphur to Li2S2/Li2S in Li-S batteries. <i>Scientific Reports</i> , 2015 , 5, 12146	4.9	125
165	Synthesis of a nitrogen rich (2DID) hybrid carbon nanomaterial using a MnO2 nanorod template for high performance Li-ion battery applications. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 6810-6818	13	26
164	Vanadium oxychloride as electrode material for sodium ion batteries. <i>Electrochemistry Communications</i> , 2015 , 60, 180-184	5.1	20
163	Performance Improvement of Magnesium Sulfur Batteries with Modified Non-Nucleophilic Electrolytes. <i>Advanced Energy Materials</i> , 2015 , 5, 1401155	21.8	241
162	Li(+) intercalation in isostructural Li2VO3 and Li2VO2F with O(2-) and mixed O(2-)/F(-) anions. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 17288-95	3.6	50
161	Batteries: Performance Improvement of Magnesium Sulfur Batteries with Modified Non-Nucleophilic Electrolytes (Adv. Energy Mater. 3/2015). <i>Advanced Energy Materials</i> , 2015 , 5,	21.8	1
160	Improved Voltage and Cycling for Li Intercalation in High-Capacity Disordered Oxyfluoride Cathodes. <i>Advanced Science</i> , 2015 , 2, 1500128	13.6	48
159	Hydrogen diffusion in La1.5Nd0.5MgNi9 alloy electrodes of the Ni/MH battery. <i>Journal of Alloys and Compounds</i> , 2015 , 645, S288-S291	5.7	25
158	Development of tysonite-type fluoride conducting thin film electrolytes for fluoride ion batteries. <i>Solid State Ionics</i> , 2015 , 272, 39-44	3.3	52
157	Disordered Lithium-Rich Oxyfluoride as a Stable Host for Enhanced Li+ Intercalation Storage. <i>Advanced Energy Materials</i> , 2015 , 5, 1401814	21.8	119
156	A fluoride-doped PEG matrix as an electrolyte for anion transportation in a room-temperature fluoride ion battery. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 1214-1218	13	51
155	Oxidation state and local structure of a high-capacity LiF/Fe(V2O5) conversion cathode for Li-ion batteries. <i>Acta Materialia</i> , 2014 , 68, 179-188	8.4	9
154	Effect of oxygen on the microstructure and hydrogen storage properties of VIII IT Be quaternary solid solutions. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 20000-20008	6.7	18

153	Electrochemical fluorination of perovskite type BaFeO2.5. Dalton Transactions, 2014, 43, 15771-8	4.3	29	
152	Beneficial effects of stoichiometry and nanostructure for a LiBH4MgH2 hydrogen storage system. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 66-72	13	15	
151	Novel transmetalation reaction for electrolyte synthesis for rechargeable magnesium batteries. <i>RSC Advances</i> , 2014 , 4, 26924-26927	3.7	46	
150	Development of new anode composite materials for fluoride ion batteries. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 20861-20872	13	77	
149	Magnesium anode for chloride ion batteries. ACS Applied Materials & amp; Interfaces, 2014, 6, 10997-10	00 .5	57	
148	A facile synthesis of encapsulated CoFe2O4 into carbon nanofibres and its application as conversion anodes for lithium ion batteries. <i>Journal of Power Sources</i> , 2014 , 260, 205-210	8.9	51	
147	Material properties and empirical rate equations for hydrogen sorption reactions in 2 LiNH2¶.1 MgH2¶.1 LiBH4¶ wt.% ZrCoH3. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 8283-8292	6.7	19	
146	Chloride ion battery: A new member in the rechargeable battery family. <i>Journal of Power Sources</i> , 2014 , 245, 706-711	8.9	108	
145	Solid electrolytes for fluoride ion batteries: ionic conductivity in polycrystalline tysonite-type fluorides. <i>ACS Applied Materials & Damp; Interfaces</i> , 2014 , 6, 2103-10	9.5	102	
144	Production of nanocrystalline lithium fluoride by planetary ball-milling. <i>Powder Technology</i> , 2014 , 264, 409-417	5.2	11	
143	LiF/Fe/V2O5 nanocomposite as high capacity cathode for lithium ion batteries. <i>Journal of Power Sources</i> , 2014 , 267, 203-211	8.9	9	
142	A simple synthesis of MnN0.43@C nanocomposite: characterization and application as battery material. <i>Journal of Nanoparticle Research</i> , 2014 , 16, 1	2.3	10	
141	Corrosion Resistance of Current Collector Materials in Bisamide Based Electrolyte for Magnesium Batteries. <i>ECS Electrochemistry Letters</i> , 2014 , 4, C8-C10		51	
140	Vanadium oxychloride/magnesium electrode systems for chloride ion batteries. <i>ACS Applied Materials & ACS Applied Materials & ACS Applied</i>	9.5	48	
139	Reversible In-Situ TEM Electrochemical studies of Fluoride Ion Battery. <i>Microscopy and Microanalysis</i> , 2014 , 20, 1620-1621	0.5	3	
138	Effect of NaH/MgB2 ratio on the hydrogen absorption kinetics of the system NaH + MgB2. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 5030-5036	6.7	12	
137	Konversionsmaterialien fildie Energiespeicherung. <i>Chemie in Unserer Zeit</i> , 2013 , 47, 230-238	0.2	4	
136	Bisamide based non-nucleophilic electrolytes for rechargeable magnesium batteries. <i>RSC Advances</i> , 2013 , 3, 16330	3.7	139	

135	Getu nanoparticles produced by inert gas condensation and their application as anode material for lithium ion batteries. <i>Electrochemistry Communications</i> , 2013 , 35, 116-119	5.1	20
134	Improving the energy density and power density of CFx by mechanical milling: a primary lithium battery electrode. ACS Applied Materials & amp; Interfaces, 2013, 5, 11207-11	9.5	36
133	Altered reaction pathways of eutectic LiBH4Mg(BH4)2 by nanoconfinement. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 3379	13	46
132	Preparation, scale-up and testing of nanoscale, doped amide systems for hydrogen storage. International Journal of Hydrogen Energy, 2013 , 38, 1439-1449	6.7	11
131	Nanostructured Fluorite-Type Fluorides As Electrolytes for Fluoride Ion Batteries. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 4943-4950	3.8	122
130	CFx Derived Carbon E eF2 Nanocomposites for Reversible Lithium Storage. <i>Advanced Energy Materials</i> , 2013 , 3, 308-313	21.8	63
129	Metal oxychlorides as cathode materials for chloride ion batteries. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 13621-4	16.4	116
128	Metal Oxychlorides as Cathode Materials for Chloride Ion Batteries. <i>Angewandte Chemie</i> , 2013 , 125, 13	38 6.6 -13	18 <u>6</u> 9
127	Influence of particle size and fluorination ratio of CF x precursor compounds on the electrochemical performance of C-FeF2 nanocomposites for reversible lithium storage. <i>Beilstein Journal of Nanotechnology</i> , 2013 , 4, 705-13	3	17
126	A facile synthesis of a carbon-encapsulated Fe3O4 nanocomposite and its performance as anode in lithium-ion batteries. <i>Beilstein Journal of Nanotechnology</i> , 2013 , 4, 699-704	3	20
125	Experimental study of powder bed behavior of sodium alanate in a lab-scale H2 storage tank with flow-through mode. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 7645-7653	6.7	11
124	Tailored heat transfer characteristics of pelletized LiNH2MgH2 and NaAlH4 hydrogen storage materials. <i>Journal of Power Sources</i> , 2012 , 205, 173-179	8.9	33
123	Additive Effects of LiBH4 and ZrCoH3 on the Hydrogen Sorption of the Li-Mg-N-H Hydrogen Storage System. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 20246-20253	3.8	25
122	Hindered Rotational Energy Barriers of BH4 T etrahedra in M g(BH4)2 from Quasielastic Neutron Scattering and DFT Calculations. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 2013-2023	3.8	39
121	Effect of a Ti-Based Additive on the Desorption in Isotope-Labeled LiB(H,D)4Mg(H,D)2 Nanocomposites. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 11877-11885	3.8	9
120	The Role of Ca(BH4)2 Polymorphs. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 13472-13479	3.8	25
119	Influence of Crystal Structure of Bulk Phase on the Stability of Nanoscale Phases: Investigation on MgH2 Derived Nanostructures. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 18965-18972	3.8	20
118	Synthesis of [Co/LiF/C] nanocomposite and its application as cathode in lithium-ion batteries. <i>Journal of Alloys and Compounds</i> , 2012 , 530, 121-126	5.7	25

(2011-2012)

117	Hydrogen-storage materials dispersed into nanoporous substrates studied through incoherent inelastic neutron scattering. <i>Journal of Alloys and Compounds</i> , 2012 , 538, 91-99	5.7	6
116	Synthesis and characterisation of a mesoporous carbon/calcium borohydride nanocomposite for hydrogen storage. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 16631-16635	6.7	13
115	Influence of Nanoconfinement on Reaction Pathways of Complex Metal Hydrides. <i>Energy Procedia</i> , 2012 , 29, 731-737	2.3	7
114	Catalytic Influence of Various Cerium Precursors on the Hydrogen Sorption Properties of NaAlH4. <i>Advanced Energy Materials</i> , 2012 , 2, 560-568	21.8	34
113	Fe(3)O(4) anchored onto helical carbon nanofibers as high-performance anode in lithium-ion batteries. <i>ChemSusChem</i> , 2012 , 5, 1397-400	8.3	38
112	Effects of Ce-Based Dopants on the Hydrogen Storage Material of NaAlH4. <i>Materials Research Society Symposia Proceedings</i> , 2012 , 1441, 11		
111	Influence of nanoconfinement on morphology and dehydrogenation of the Li11BD4-Mg(11BD4)2 system. <i>Nanotechnology</i> , 2012 , 23, 255704	3.4	10
110	Structure and Thermodynamic Properties of the NaMgH3 Perovskite: A Comprehensive Study. <i>Chemistry of Materials</i> , 2011 , 23, 2317-2326	9.6	48
109	Nanoconfinement effects in energy storage materials. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 21186-95	3.6	101
108	Magnesium imide: synthesis and structure determination of an unconventional alkaline earth imide from decomposition of magnesium amide. <i>Inorganic Chemistry</i> , 2011 , 50, 1116-22	5.1	17
107	The crystal structure of the first borohydride borate, Ca3(BD4)3(BO3). <i>Journal of Materials Chemistry</i> , 2011 , 21, 7188		24
106	Nanostructured composites of mesoporous carbons and boranates as hydrogen storage materials. Journal of Alloys and Compounds, 2011 , 509, S705-S708	5.7	29
105	Hydrogen release and structural transformations in LiNH2MgH2 systems. <i>Journal of Alloys and Compounds</i> , 2011 , 509, S719-S723	5.7	14
104	Conversion materials for hydrogen storage and electrochemical applications Concepts and similarities. <i>Journal of Alloys and Compounds</i> , 2011 , 509, S529-S534	5.7	29
103	Batteries based on fluoride shuttle. <i>Journal of Materials Chemistry</i> , 2011 , 21, 17059		287
102	Hydrogen sensing with diameter- and chirality-sorted carbon nanotubes. ACS Nano, 2011, 5, 1670-6	16.7	49
101	Effect of several metal chlorides on the thermal decomposition behaviour of <code>BMg(BH4)2</code> . <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 12313-12318	6.7	50
100	On the decomposition of the 0.6LiBH4-0.4Mg(BH4)2 eutectic mixture for hydrogen storage. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 13676-13682	6.7	22

99	Feasibility and performance of the mixture of MgH2 and LiNH2 (1:1) as a hydrogen-storage material. <i>Acta Materialia</i> , 2011 , 59, 5821-5831	8.4	24
98	Polarization-dependent Raman spectroscopy of LiBH4 single crystals and Mg(BH4)2 powders. Journal of Raman Spectroscopy, 2011 , 42, 1796-1801	2.3	3
97	Temperature behavior of the AlH3 polymorph by in situ investigation using high resolution Raman scattering. <i>Journal of Physical Chemistry A</i> , 2011 , 115, 691-9	2.8	6
96	Raman and inelastic neutron scattering study on a melt-infiltrated composite of NaAlH4 and nanoporous carbon. <i>Journal of Physical Chemistry A</i> , 2011 , 115, 7503-10	2.8	8
95	LiBH4Mg(BH4)2: A Physical Mixture of Metal Borohydrides as Hydrogen Storage Material. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 6095-6101	3.8	73
94	27Al, 23Na, and 45Sc Solid-State NMR Studies of ScCl3-Doped NaAlH4. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 13100-13106	3.8	13
93	Experimental results of an air-cooled lab-scale H2 storage tank based on sodium alanate. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 3556-3565	6.7	21
92	Modified synthesis of [Fe/LiF/C] nanocomposite, and its application as conversion cathode material in lithium batteries. <i>Journal of Power Sources</i> , 2011 , 196, 5936-5944	8.9	46
91	Experimental evidence of librational vibrations determining the stability of calcium borohydride. <i>Physical Review B</i> , 2011 , 83,	3.3	23
90	A ferrocene-based carboniton lithium fluoride nanocomposite as a stable electrode material in lithium batteries. <i>Journal of Materials Chemistry</i> , 2010 , 20, 1871		79
89	Pressure Effect on the 2NaH + MgB2 Hydrogen Absorption Reaction. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 21816-21823	3.8	50
88	Nanoconfined Magnesium Borohydride for Hydrogen Storage Applications Investigated by SANS and SAXS. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 18785-18789	3.8	23
87	Synthesis of amorphous Mg(BH4)2 from MgB2 and H2 at room temperature. <i>Journal of Alloys and Compounds</i> , 2010 , 508, 212-215	5.7	55
86	Hydrogen Rotational and Translational Diffusion in Calcium Borohydride from Quasielastic Neutron Scattering and DFT Calculations. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 20249-20257	3.8	20
85	High resolution Raman and neutron investigation of Mg(BH4)2 in an extensive temperature range. <i>Journal of Physical Chemistry A</i> , 2010 , 114, 2788-93	2.8	26
84	Altered thermodynamic and kinetic properties of MgH(2) infiltrated in microporous scaffold. <i>Chemical Communications</i> , 2010 , 46, 8353-5	5.8	159
83	Functions of LiBH4 in the hydrogen sorption reactions of the 2LiH-Mg(NH2)2 system. <i>Dalton Transactions</i> , 2010 , 39, 9100-7	4.3	31
82	Thermodynamic effects in nanoscale NaAlH4. <i>ChemPhysChem</i> , 2010 , 11, 789-92	3.2	79

(2009-2010)

81	In-situ neutron diffraction study of magnesium amide/lithium hydride stoichiometric mixtures with lithium hydride excess. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 5448-5453	6.7	13
80	Small-angle scattering investigations of Mg-borohydride infiltrated in activated carbon. <i>Nanotechnology</i> , 2009 , 20, 505702	3.4	20
79	The kinetic properties of Mg(BH4)2 infiltrated in activated carbon. <i>Nanotechnology</i> , 2009 , 20, 204029	3.4	81
78	Properties of nanoscale metal hydrides. <i>Nanotechnology</i> , 2009 , 20, 204009	3.4	87
77	Complex hydrides as solid storage materials: First safety tests. <i>International Journal of Hydrogen Energy</i> , 2009 , 34, 5981-5985	6.7	22
76	Thermal coupling of a high temperature PEM fuel cell with a complex hydride tank. <i>International Journal of Hydrogen Energy</i> , 2009 , 34, 3457-3466	6.7	61
75	The effect of Al on the hydrogen sorption mechanism of LiBH(4). <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 1515-20	3.6	63
74	Structural Phase Transitions of Mg(BH4)2 under Pressure. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 486-492	3.8	38
73	Formation and Stability of Ternary Imides in the LiMgNH Hydrogen Storage System. <i>Chemistry of Materials</i> , 2009 , 21, 3485-3490	9.6	30
72	High-Pressure Investigation on Calcium Borohydride. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 15087-	15/890	22
71	Synthesis and characterization of NaBD3H, a potential structural probe for hydrogen storage materials. <i>Journal of Physical Chemistry A</i> , 2009 , 113, 13932-6	2.8	6
70	Wide-Line Solid-State NMR Characterizations of Sodium Alanates. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 15467-15472	3.8	21
69	Hydrogenation Reaction Pathway in Li2Mg(NH)2. Journal of Physical Chemistry C, 2009, 113, 15772-157	73 .8	27
68	Investigation of (Mg, Al, Li, H)-based hydride and alanate mixtures produced by reactive ball milling. <i>Journal of Alloys and Compounds</i> , 2009 , 476, 425-428	5.7	8
67	Studies of mixed hydrides based on Mg and Ca by reactive ball milling. <i>Journal of Alloys and Compounds</i> , 2009 , 476, 639-643	5.7	11
66	On the enthalpy of formation of aluminum diboride, AlB2. <i>Journal of Alloys and Compounds</i> , 2009 , 477, L11-L12	5.7	13
65	Structure of the Orthorhombic Phase and Phase Transitions of Ca(BD4)2. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 17223-17230	3.8	33
64	Fluorescence XAFS study of NaAlH(4) doped with a Ce-based precursor. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 8829-34	3.6	15

63	Nanoscale Materials For Hydrogen and Energy Storage. Frontiers of Nanoscience, 2009, 270-297	0.7	1
62	A new phase in the decomposition of Mg(BH4)2: first-principles simulated annealing. <i>Journal of Materials Chemistry</i> , 2009 , 19, 7081		23
61	The identification of a hitherto unknown intermediate phase CaB2Hx from decomposition of Ca(BH4)2. <i>Journal of Materials Chemistry</i> , 2009 , 19, 2754		51
60	Reversible hydrogen storage in LiBH4AlliH composite powder. <i>Scripta Materialia</i> , 2008 , 58, 963-965	5.6	93
59	A Density Functional Study of ₱Mg(BH4)2. <i>Chemistry of Materials</i> , 2008 , 20, 4952-4956	9.6	70
58	Structure of Ca(BD4)2 beta-phase from combined neutron and synchrotron X-ray powder diffraction data and density functional calculations. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 8042-8	3.4	87
57	Thermal decomposition of Mg(BH4)2 under He flow and H2 pressure. <i>Journal of Materials Chemistry</i> , 2008 , 18, 2611		99
56	Vibrational Spectra of Ca(BH 4) 2. Journal of Physical Chemistry C, 2008, 112, 11575-11579	3.8	50
55	Investigation on the Properties of the Mixture Consisting of Mg(NH2)2, LiH, and LiBH4 as a Hydrogen Storage Material. <i>Chemistry of Materials</i> , 2008 , 20, 7089-7094	9.6	41
54	Comparison of the Calculated and Experimental Scenarios for Solid-State Reactions Involving Ca(AlH4)2. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 131-138	3.8	14
53	Investigation of the Nature of a TiAl Cluster Formed upon Cycling under Hydrogen in Na Alanate Doped with a Ti-Based Precursor. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 12545-12549	3.8	35
52	Scientific Scope. <i>Green Energy and Technology</i> , 2008 , 625-635	0.6	
51	Variation and Influence of the Local Structure around Ti in NaAlH4 Doped with a Ti-Based Precursor. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 16664-16669	3.8	15
50	Diborane Release from LiBH4/Silica-Gel Mixtures and the Effect of Additives. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 14026-14029	3.8	92
49	Al K Edge XANES Measurements in NaAlH4 Doped with TiCl3 by Ball Milling. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 3795-3798	3.8	12
48	In situ synchrotron diffraction studies of phase transitions and thermal decomposition of Mg(BH4)2 and Ca(BH4)2. <i>Journal of Materials Chemistry</i> , 2007 , 17, 4939		135
47	Preface to the viewpoint set: Nanoscale materials for hydrogen storage. <i>Scripta Materialia</i> , 2007 , 56, 801-802	5.6	5
46	Rate limiting steps of the phase transformations in Ti-doped NaAlH4 investigated by isotope exchange. <i>Physical Review B</i> , 2007 , 75,	3.3	51

(2004-2007)

45	Thermal decomposition of AlH3 studied by in situ synchrotron X-ray diffraction and thermal desorption spectroscopy. <i>Journal of Alloys and Compounds</i> , 2007 , 446-447, 280-289	5.7	56
44	Reaction steps in the LiMgNH hydrogen storage system. <i>Journal of Alloys and Compounds</i> , 2007 , 446-447, 332-335	5.7	39
43	Double-bridge bonding of aluminium and hydrogen in the crystal structure of gamma-AlH3. <i>Inorganic Chemistry</i> , 2007 , 46, 1051-5	5.1	83
42	Synthesis and properties of magnesium tetrahydroborate, Mg(BH4)2. <i>Journal of Materials Chemistry</i> , 2007 , 17, 3496		287
41	Evolution of the local structure around Ti atoms in NaAlH4 doped with TiCl3 or Ti13.6THF by ball milling using X-ray absorption and X-ray photoelectron spectroscopy. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 1192-200	3.4	62
40	Synchrotron X-ray studies of Ti-doped NaAlH4. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 3051-4	3.4	23
39	SEM and TEM characterization of sodium alanate doped with TiCl3 or small Ti clusters (Ti13IbTHF). Journal of Alloys and Compounds, 2006 , 414, 190-203	5.7	37
38	Comment on A theoretical study of nanoporous organic molecules for hydrogen storage [Micropor. Mesopor. Mater. 89 (2006) 138]. <i>Microporous and Mesoporous Materials</i> , 2006 , 94, 371-372	5.3	1
37	Determination of the crystal structure of Mg(AlH4)2 by combined X-ray and neutron diffraction. <i>Journal of Alloys and Compounds</i> , 2005 , 387, 47-51	5.7	68
36	Effect of Ti catalyst with different chemical form on LiNH hydrogen storage properties. <i>Journal of Alloys and Compounds</i> , 2005 , 404-406, 439-442	5.7	90
35	Effects of catalysts on the dehydriding of alanates monitored by proton NMR. <i>Journal of Alloys and Compounds</i> , 2005 , 404-406, 738-742	5.7	24
34	Kinetic studies of the decomposition of NaAlH4 doped with a Ti-based catalyst. <i>Journal of Alloys and Compounds</i> , 2005 , 404-406, 339-342	5.7	40
33	Chemical state of Ti in sodium alanate doped with TiCl3 using X-ray photoelectron spectroscopy. Journal of Alloys and Compounds, 2005 , 404-406, 766-770	5.7	37
32	Thermal decomposition of Mg(AlH4)2 studied by in situ synchrotron X-ray diffraction. <i>Journal of Alloys and Compounds</i> , 2005 , 404-406, 752-756	5.7	33
31	Nanocrystalline alanates Phase transformations, and catalysts. <i>Journal of Alloys and Compounds</i> , 2005 , 404-406, 732-737	5.7	29
30	Nanotechnological Aspects in Materials for Hydrogen Storage. <i>Advanced Engineering Materials</i> , 2005 , 7, 443-455	3.5	216
29	Synthesis and properties of calcium alanate and two solvent adducts. <i>Inorganic Chemistry</i> , 2005 , 44, 347	9 5 .84	48
28	Hydrogen exchange kinetics in NaAlH4 catalyzed in different decomposition states. <i>Journal of Applied Physics</i> , 2004 , 95, 7748-7753	2.5	56

27	Nanocrystalline aluminium hydrides for hydrogen storage. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2004 , 108, 42-47	3.1	71
26	Chemical State and Local Structure around Titanium Atoms in NaAlH4 Doped with TiCl3 Using X-ray Absorption Spectroscopy. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 16372-16376	3.4	101
25	On the Interaction of Dihydrogen with Aromatic Systems [] <i>Journal of Physical Chemistry A</i> , 2004 , 108, 3019-3023	2.8	169
24	The structure of magnesium alanate. <i>Inorganic Chemistry</i> , 2003 , 42, 7060-6	5.1	88
23	Magnesium alanatel material for reversible hydrogen storage?. <i>Journal of Alloys and Compounds</i> , 2003 , 356-357, 418-422	5.7	112
22	Small Ti clusters for catalysis of hydrogen exchange in NaAlH4. <i>Nanotechnology</i> , 2003 , 14, 778-785	3.4	166
21	Is the enhanced solubility in nanocomposites an electronic effect?. Scripta Materialia, 2002, 46, 497-500	5.6	12
20	Synthesis and structures of magnesium alanate and two solvent adducts. <i>Journal of Alloys and Compounds</i> , 2002 , 345, 286-296	5.7	110
19	Preparation of microstructure compatible porous supports by solgel synthesis for catalyst coatings. <i>Applied Catalysis A: General</i> , 2001 , 220, 79-92	5.1	139
18	Microstructured Rhodium Catalysts for the Partial Oxidation of Methane to Syngas under Pressure. <i>Industrial & Discourse Chemistry Research</i> , 2001 , 40, 3475-3483	3.9	65
17	The Controlled Oxidation of Hydrogen from an Explosive Mixture of Gases Using a Microstructured Reactor/Heat Exchanger and Pt/Al2O3 Catalyst. <i>Journal of Catalysis</i> , 2000 , 191, 282-293	7.3	159
16	Functional Coatings for Microstructure Reactors and Heat Exchangers 2000 , 90-101		8
15	Microstructured Catalysts for Methanol-Steam Reforming 2000, 372-382		10
14	Rapid determination of erosion rates with electron beam SNMS. <i>Freseniusl Journal of Analytical Chemistry</i> , 1995 , 353, 598-602		O
13	Depth-resolved speciation of nitrogen compounds in environmental solids. <i>Freseniusl Journal of Analytical Chemistry</i> , 1994 , 349, 205-207		3
12	Identification of nitrates and sulphates with dynamic SIMS. <i>Freseniusl Journal of Analytical Chemistry</i> , 1994 , 348, 201-204		3
11	Depth-resolved chemical analysis of environmental microparticles by secondary mass spectrometry. <i>Applied Surface Science</i> , 1993 , 70-71, 63-67	6.7	11
10	Quantitative analysis of ionic solids by secondary neutral mass spectrometry. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 1992 , 10, 362-367	2.9	21

LIST OF PUBLICATIONS

9	Analysis of ionic solids with SNMS. Freseniusl Journal of Analytical Chemistry, 1991 , 341, 260-264		9	
8	Mass spectrometry of secondary neutrals and ions for chemical analysis of salts. <i>Surface and Interface Analysis</i> , 1991 , 17, 151-157	1.5	14	
7	Investigation of the Anode-Electrolyte Interface in a Magnesium Full-Cell with Fluorinated Alkoxyborate-Based Electrolyte. <i>Batteries and Supercaps</i> ,	5.6	1	
6	Rechargeable Batteries of the FutureThe State of the Art from a BATTERY 2030+ Perspective. <i>Advanced Energy Materials</i> ,2102904	21.8	23	
5	Toward Better Stability and Reversibility of the Mn4+/Mn2+ Double Redox Activity in Disordered Rocksalt Oxyfluoride Cathode Materials. <i>Chemistry of Materials</i> ,	9.6	6	
4	Recent Research and Progress in Batteries for Electric Vehicles. <i>Batteries and Supercaps</i> ,	5.6	5	
3	Combining Quinone-Based Cathode with an Efficient Borate Electrolyte for High-Performance Magnesium Batteries. <i>Batteries and Supercaps</i> ,	5.6	5	
2	Resolving the Role of Configurational Entropy in Improving Cycling Performance of Multicomponent Hexacyanoferrate Cathodes for Sodium-Ion Batteries. <i>Advanced Functional Materials</i> ,2202372	15.6	5	
1	Tungsten Oxytetrachloride as a Positive Electrode for Chloride-Ion Batteries. <i>Energy Technology</i> ,220019	3 .5	0	