Abhaya K Datye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5806432/publications.pdf Version: 2024-02-01

		9264	11607
323	21,529	74	135
papers	citations	h-index	g-index
334	334	334	17535
	doss situtions	times replad	aiting outhors
an docs	does citations	times ranked	ching autions

ΔΡΗΛΥΛ Κ ΠΛΤΥΓ

#	Article	IF	CITATIONS
1	Guiding change in higher education: an emergent, iterative application of Kotter's change model. Studies in Higher Education, 2022, 47, 270-289.	4.5	28
2	Vapor-phase self-assembly for generating thermally stable single-atom catalysts. CheM, 2022, 8, 731-748.	11.7	23
3	All the lonely atoms, where do they all belong?. Nature Nanotechnology, 2022, 17, 110-111.	31.5	3
4	Coordination structure at work: Atomically dispersed heterogeneous catalysts. Coordination Chemistry Reviews, 2022, 460, 214469.	18.8	15
5	Dehydroaromatization Pathway of Propane on PtZn/SiO ₂ + ZSM-5 Bifunctional Catalyst. ACS Sustainable Chemistry and Engineering, 2022, 10, 394-409.	6.7	10
6	Designing Ceria/Alumina for Efficient Trapping of Platinum Single Atoms. ACS Sustainable Chemistry and Engineering, 2022, 10, 7603-7612.	6.7	9
7	Opportunities and challenges in the development of advanced materials for emission control catalysts. Nature Materials, 2021, 20, 1049-1059.	27.5	105
8	Strong metal-support interaction (SMSI) of Pt/CeO2 and its effect on propane dehydrogenation. Catalysis Today, 2021, 371, 4-10.	4.4	28
9	Creating BrÃ,nsted acidity at the SiO2-Nb2O5 interface. Journal of Catalysis, 2021, 394, 387-396.	6.2	8
10	Atomically Dispersed Dopants for Stabilizing Ceria Surface Area. Applied Catalysis B: Environmental, 2021, 284, 119722.	20.2	37
11	Single atom catalysis poised to transition from an academic curiosity to an industrially relevant technology. Nature Communications, 2021, 12, 895.	12.8	52
12	A High Entropy Oxide Designed to Catalyze CO Oxidation Without Precious Metals. ACS Applied Materials & Interfaces, 2021, 13, 8120-8128.	8.0	30
13	Thermally Stable Singleâ€Atom Heterogeneous Catalysts. Advanced Materials, 2021, 33, e2004319.	21.0	127
14	Identifying Individual Atoms in Single Atom Pt/CeO2 Catalysts. Microscopy and Microanalysis, 2021, 27, 2608-2610.	0.4	4
15	Unraveling the Intermediate Reaction Complexes and Critical Role of Support-Derived Oxygen Atoms in CO Oxidation on Single-Atom Pt/CeO ₂ . ACS Catalysis, 2021, 11, 8701-8715.	11.2	51
16	Identification of a Selectivity Descriptor for Propane Dehydrogenation through Density Functional and Microkinetic Analysis on Pure Pd and Pd Alloys. ACS Catalysis, 2021, 11, 9588-9604.	11.2	21
17	Achieving high ethylene yield in non-oxidative ethane dehydrogenation. Applied Catalysis A: General, 2021, 624, 118309.	4.3	15
18	Sulfur Tolerant Subnanometer Fe/Alumina Catalysts for Propane Dehydrogenation. ACS Applied Nano Materials, 2021, 4, 10055-10067.	5.0	13

#	Article	IF	CITATIONS
19	Tailoring the Local Environment of Platinum in Singleâ€Atom Pt ₁ /CeO ₂ Catalysts for Robust Lowâ€Temperature CO Oxidation. Angewandte Chemie, 2021, 133, 26258-26266.	2.0	7
20	Tailoring the Local Environment of Platinum in Singleâ€Atom Pt ₁ /CeO ₂ Catalysts for Robust Lowâ€Temperature CO Oxidation. Angewandte Chemie - International Edition, 2021, 60, 26054-26062.	13.8	84
21	Lanthanum induced lattice strain improves hydrogen sulfide capacities of copper oxide adsorbents. AICHE Journal, 2021, 67, e17484.	3.6	3
22	Engineering catalyst supports to stabilize PdOx two-dimensional rafts for water-tolerant methane oxidation. Nature Catalysis, 2021, 4, 830-839.	34.4	86
23	Atomically Dispersed Tin-Modified γ-alumina for Selective Propane Dehydrogenation under H ₂ S Co-feed. ACS Catalysis, 2021, 11, 13472-13482.	11.2	8
24	Structural and Catalytic Properties of Isolated Pt ²⁺ Sites in Platinum Phosphide (PtP ₂). ACS Catalysis, 2021, 11, 13496-13509.	11.2	15
25	Frontispiece: Tailoring the Local Environment of Platinum in Singleâ€Atom Pt ₁ /CeO ₂ Catalysts for Robust Lowâ€Temperature CO Oxidation. Angewandte Chemie - International Edition, 2021, 60, .	13.8	1
26	Frontispiz: Tailoring the Local Environment of Platinum in Singleâ€Atom Pt ₁ /CeO ₂ Catalysts for Robust Lowâ€Temperature CO Oxidation. Angewandte Chemie, 2021, 133, .	2.0	0
27	Environmentally benign synthesis of a PGM-free catalyst for low temperature CO oxidation. Applied Catalysis B: Environmental, 2020, 264, 118547.	20.2	20
28	Origin of the High CO Oxidation Activity on CeO ₂ Supported Pt Nanoparticles: Weaker Binding of CO or Facile Oxygen Transfer from the Support?. ChemCatChem, 2020, 12, 1726-1733.	3.7	44
29	Reply to: "Pitfalls in identifying active catalyst species― Nature Communications, 2020, 11, 4574.	12.8	0
30	Restricting the growth of Pt nanoparticles through confinement in ordered nanoporous structures. Applied Catalysis A: General, 2020, 607, 117858.	4.3	4
31	Introducing and Controlling Water Vapor in Closed-Cell <i>In Situ</i> Electron Microscopy Gas Reactions. Microscopy and Microanalysis, 2020, 26, 229-239.	0.4	12
32	Investigating anomalous growth of platinum particles during accelerated aging of diesel oxidation catalysts. Applied Catalysis B: Environmental, 2020, 266, 118598.	20.2	27
33	Synthesis of NiO Crystals Exposing Stable Highâ€Index Facets. Angewandte Chemie, 2020, 132, 15231-15235.	2.0	5
34	Deactivation and regeneration of carbon supported Pt and Ru catalysts in aqueous phase hydrogenation of 2-pentanone. Catalysis Science and Technology, 2020, 10, 3047-3056.	4.1	7
35	Synthesis of NiO Crystals Exposing Stable Highâ€Index Facets. Angewandte Chemie - International Edition, 2020, 59, 15119-15123.	13.8	22
36	Enhancement of CO Hydrogenation Activity of Pt Catalysts by CeO2 and TiO2 Supports. , 2020, , 503-510.		0

#	Article	IF	CITATIONS
37	High activity Pd-Fe bimetallic catalysts for aqueous phase hydrogenations. Molecular Catalysis, 2019, 477, 110546.	2.0	8
38	Dispersing nanoparticles into single atoms. Nature Nanotechnology, 2019, 14, 817-818.	31.5	11
39	Tuning Pt-CeO2 interactions by high-temperature vapor-phase synthesis for improved reducibility of lattice oxygen. Nature Communications, 2019, 10, 1358.	12.8	302
40	Stabilizing High Metal Loadings of Thermally Stable Platinum Single Atoms on an Industrial Catalyst Support. ACS Catalysis, 2019, 9, 3978-3990.	11.2	233
41	Synthesis of Nickelâ€Doped Ceria Catalysts for Selective Acetylene Hydrogenation. ChemCatChem, 2019, 11, 1526-1533.	3.7	30
42	CO oxidation by Pd supported on CeO2(100) and CeO2(111) facets. Applied Catalysis B: Environmental, 2019, 243, 36-46.	20.2	231
43	Factors Governing MgO(111) Faceting in the Thermal Decomposition of Oxide Precursors. Chemistry of Materials, 2018, 30, 2641-2650.	6.7	34
44	Stability of Pd nanoparticles on carbon-coated supports under hydrothermal conditions. Catalysis Science and Technology, 2018, 8, 1151-1160.	4.1	28
45	Atomically Dispersed Co and Cu on N-Doped Carbon for Reactions Involving C–H Activation. ACS Catalysis, 2018, 8, 3875-3884.	11.2	63
46	Using a Combination of HAADF and SE Imaging to Locate Pt Nanoparticles within a Mesoporous Silica Diesel Oxidation Catalyst. Microscopy and Microanalysis, 2018, 24, 1700-1701.	0.4	2
47	Design of Effective Catalysts for Selective Alkyne Hydrogenation by Doping of Ceria with a Single-Atom Promotor. Journal of the American Chemical Society, 2018, 140, 12964-12973.	13.7	204
48	Atom trapping: a novel approach to generate thermally stable and regenerable single-atom catalysts. National Science Review, 2018, 5, 630-632.	9.5	47
49	Correlating DFT Calculations with CO Oxidation Reactivity on Ga-Doped Pt/CeO ₂ Single-Atom Catalysts. Journal of Physical Chemistry C, 2018, 122, 22460-22468.	3.1	91
50	Design considerations for low-temperature hydrocarbon oxidation reactions on Pd based catalysts. Applied Catalysis B: Environmental, 2018, 236, 436-444.	20.2	98
51	Protective Carbon Overlayers from 2,3-Naphthalenediol Pyrolysis on Mesoporous SiO2 and Al2O3 Analyzed by Solid-State NMR. Materials, 2018, 11, 980.	2.9	4
52	Improved hydrothermal stability of Pd nanoparticles on nitrogen-doped carbon supports. Catalysis Science and Technology, 2018, 8, 3548-3561.	4.1	20
53	Metastable Pd ↔ PdO Structures During High Temperature Methane Oxidation. Catalysis Letters, 2017, 147, 1095-1103.	2.6	44
54	Thermally Stable and Regenerable Platinum–Tin Clusters for Propane Dehydrogenation Prepared by Atom Trapping on Ceria. Angewandte Chemie - International Edition, 2017, 56, 8986-8991.	13.8	262

Αβμαγά Κ Οάτγε

#	Article	IF	CITATIONS
55	Thermally Stable and Regenerable Platinum–Tin Clusters for Propane Dehydrogenation Prepared by Atom Trapping on Ceria. Angewandte Chemie, 2017, 129, 9114-9119.	2.0	49
56	Designing Catalysts for Meeting the DOE 150 °C Challenge for Exhaust Emissions. Microscopy and Microanalysis, 2017, 23, 2028-2029.	0.4	4
57	Atomically Dispersed Pd–O Species on CeO ₂ (111) as Highly Active Sites for Low-Temperature CO Oxidation. ACS Catalysis, 2017, 7, 6887-6891.	11.2	208
58	Regenerative trapping: How Pd improves the durability of Pt diesel oxidation catalysts. Applied Catalysis B: Environmental, 2017, 218, 581-590.	20.2	50
59	Activation of surface lattice oxygen in single-atom Pt/CeO ₂ for low-temperature CO oxidation. Science, 2017, 358, 1419-1423.	12.6	1,114
60	Selective Aerobic Oxidation of Alcohols over Atomicallyâ€Ðispersed Nonâ€Precious Metal Catalysts. ChemSusChem, 2017, 10, 359-362.	6.8	79
61	Water Vapor in Closed-Cell In Situ Gas Reactions: Initial Experiments. Microscopy and Microanalysis, 2017, 23, 940-941.	0.4	2
62	Altered CO Hydrogenation Selectivity due to Pt-CeO2 Contact. , 2017, , 579-584.		0
63	The Hydrogenolysis and Isomerization of Light Hydrocarbons Over Pt Catalysts. , 2017, , 539-544.		Ο
64	Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science, 2016, 353, 150-154.	12.6	1,487
65	Vapor phase deoxygenation of heptanoic acid over silica-supported palladium and palladium-tin catalysts. Journal of Catalysis, 2016, 344, 202-212.	6.2	17
66	Influence of Dioxygen on the Promotional Effect of Bi during Pt-Catalyzed Oxidation of 1,6-Hexanediol. ACS Catalysis, 2016, 6, 4206-4217.	11.2	21
67	Trapping mobile Pt species by PdO in diesel oxidation catalysts: Smaller is better. Catalysis Today, 2016, 272, 80-86.	4.4	54
68	Role of Sn in the Regeneration of Pt/l³-Al ₂ O ₃ Light Alkane Dehydrogenation Catalysts. ACS Catalysis, 2016, 6, 2257-2264.	11.2	188
69	Graphitic arbon Layers on Oxides: Toward Stable Heterogeneous Catalysts for Biomass Conversion Reactions. Angewandte Chemie, 2015, 127, 8050-8054.	2.0	11
70	Graphitic arbon Layers on Oxides: Toward Stable Heterogeneous Catalysts for Biomass Conversion Reactions. Angewandte Chemie - International Edition, 2015, 54, 7939-7943.	13.8	63
71	Synthesis of 1 nm Pd Nanoparticles in a Microfluidic Reactor: Insights from in Situ X-ray Absorption Fine Structure Spectroscopy and Small-Angle X-ray Scattering. Journal of Physical Chemistry C, 2015, 119, 13257-13267.	3.1	61
72	Relating adatom emission to improved durability of Pt–Pd diesel oxidation catalysts. Journal of Catalysis, 2015, 328, 151-164.	6.2	75

#	Article	IF	CITATIONS
73	Carbon Overcoating of Supported Metal Catalysts for Improved Hydrothermal Stability. ACS Catalysis, 2015, 5, 4546-4555.	11.2	88
74	Reactivity and stability of supported Pd nanoparticles during the liquid-phase and gas-phase decarbonylation of heptanoic acid. Applied Catalysis A: General, 2015, 504, 295-307.	4.3	21
75	Low-temperature aqueous-phase reforming of ethanol on bimetallic PdZn catalysts. Catalysis Science and Technology, 2015, 5, 254-263.	4.1	24
76	Ni-La Electrocatalysts for Direct Hydrazine Alkaline Anion-Exchange Membrane Fuel Cells. Journal of the Electrochemical Society, 2014, 161, H3106-H3112.	2.9	12
77	Synthesis of PdOâ€ZnO mixed oxide precursors for PdZn intermetallic catalysts. Crystal Research and Technology, 2014, 49, 699-707.	1.3	3
78	Ceria and Doped Ceria Nanoparticle Additives for Polymer Fuel Cell Lifetime Improvement. ECS Transactions, 2014, 64, 403-411.	0.5	8
79	Cerium Migration through Hydrogen Fuel Cells during Accelerated Stress Testing. ECS Electrochemistry Letters, 2014, 3, F19-F22.	1.9	62
80	Kinetics and mechanism of 5-hydroxymethylfurfural oxidation and their implications for catalyst development. Journal of Molecular Catalysis A, 2014, 388-389, 123-132.	4.8	89
81	Comparison of impregnation and deposition precipitation for the synthesis of hydrothermally stable niobia/carbon. Applied Catalysis A: General, 2014, 471, 165-174.	4.3	23
82	Trapping of Mobile Pt Species by PdO Nanoparticles under Oxidizing Conditions. Journal of Physical Chemistry Letters, 2014, 5, 2089-2093.	4.6	77
83	Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina. Nature Communications, 2014, 5, 4885.	12.8	498
84	Hydrothermally stable heterogeneous catalysts for conversion of biorenewables. Green Chemistry, 2014, 16, 4627-4643.	9.0	188
85	The effect of ZnO addition on Co/C catalyst for vapor and aqueous phase reforming of ethanol. Catalysis Today, 2014, 233, 38-45.	4.4	25
86	Influence of ZnO Facets on Pd/ZnO Catalysts for Methanol Steam Reforming. ACS Catalysis, 2014, 4, 2379-2386.	11.2	99
87	Improved selectivity of carbon-supported palladium catalysts for the hydrogenation of acetylene in excess ethylene. Applied Catalysis A: General, 2014, 482, 108-115.	4.3	72
88	Selective production of 1,2-propanediol by hydrogenolysis of glycerol over bimetallic Ru–Cu nanoparticles supported on TiO2. Applied Catalysis A: General, 2014, 482, 137-144.	4.3	57
89	Tuning the Location of Niobia/Carbon Composites in a Biphasic Reaction: Dehydration of d-Glucose to 5-Hydroxymethylfurfural. Catalysis Letters, 2013, 143, 509-516.	2.6	40
90	Microstructure of Bimetallic PtPd Catalysts under Oxidizing Conditions. ChemCatChem, 2013, 5, 2636-2645.	3.7	64

#	Article	IF	CITATIONS
91	A facile approach for the synthesis of niobia/carbon composites having improved hydrothermal stability for aqueous-phase reactions. Journal of Catalysis, 2013, 302, 93-100.	6.2	50
92	Exposed Surfaces on Shapeâ€Controlled Ceria Nanoparticles Revealed through ACâ€TEM and Water–Gas Shift Reactivity. ChemSusChem, 2013, 6, 1898-1906.	6.8	134
93	In situ Transmission Electron Microscopy of catalyst sintering. Journal of Catalysis, 2013, 308, 291-305.	6.2	106
94	The CO oxidation mechanism and reactivity on PdZn alloys. Physical Chemistry Chemical Physics, 2013, 15, 7768.	2.8	55
95	Minimizing the Formation of Coke and Methane on Co Nanoparticles in Steam Reforming of Biomassâ€Đerived Oxygenates. ChemCatChem, 2013, 5, 1299-1303.	3.7	34
96	Improved Low-Temperature CO Oxidation Performance of Pd Supported on La-Stabilized Alumina. ACS Catalysis, 2013, 3, 846-855.	11.2	67
97	Sintering of Catalytic Nanoparticles: Particle Migration or Ostwald Ripening?. Accounts of Chemical Research, 2013, 46, 1720-1730.	15.6	970
98	High CO2 Selectivity of ZnO Powder Catalysts for Methanol Steam Reforming. Journal of Physical Chemistry C, 2013, 117, 6493-6503.	3.1	27
99	Size-dependent evolution of the atomic vibrational density of states and thermodynamic properties of isolated Fe nanoparticles. Physical Review B, 2012, 86, .	3.2	30
100	Improved Hydrothermal Stability of Mesoporous Oxides for Reactions in the Aqueous Phase. Angewandte Chemie - International Edition, 2012, 51, 13163-13167.	13.8	90
101	Aerosol-derived Ni1â~'xZnx electrocatalysts for direct hydrazine fuel cells. Physical Chemistry Chemical Physics, 2012, 14, 5512.	2.8	81
102	In situ coarsening study of inverse micelle-prepared Pt nanoparticles supported on γ-Al2O3: pretreatment and environmental effects. Physical Chemistry Chemical Physics, 2012, 14, 11457.	2.8	60
103	Bimetallic catalysts for hydrogen generation. Chemical Society Reviews, 2012, 41, 7994.	38.1	309
104	Effect of preparation method on the performance of the Ni/Al2O3 catalysts for aqueous-phase reforming of ethanol: Part II-characterization. International Journal of Hydrogen Energy, 2012, 37, 18815-18826.	7.1	33
105	Environmental Transmission Electron Microscopy Study of the Origins of Anomalous Particle Size Distributions in Supported Metal Catalysts. ACS Catalysis, 2012, 2, 2349-2356.	11.2	68
106	The Contribution of Alumina Phase Transformations to the Sintering of Pd Automotive Catalysts. Topics in Catalysis, 2012, 55, 78-83.	2.8	14
107	RuSn bimetallic catalysts for selective hydrogenation of levulinic acid to Î ³ -valerolactone. Applied Catalysis B: Environmental, 2012, 117-118, 321-329.	20.2	196
108	Effect of preparation methods on the performance of Ni/Al2O3 catalysts for aqueous-phase reforming of ethanol: Part I-catalytic activity. International Journal of Hydrogen Energy, 2012, 37, 8143-8153.	7.1	60

#	Article	IF	CITATIONS
109	Catalytic reactivity of face centered cubic $PdZnl \pm$ for the steam reforming of methanol. Journal of Catalysis, 2012, 291, 44-54.	6.2	46
110	Relating Rates of Catalyst Sintering to the Disappearance of Individual Nanoparticles during Ostwald Ripening. Journal of the American Chemical Society, 2011, 133, 20672-20675.	13.7	250
111	Selective Hydrogenolysis of Polyols and Cyclic Ethers over Bifunctional Surface Sites on Rhodium–Rhenium Catalysts. Journal of the American Chemical Society, 2011, 133, 12675-12689.	13.7	439
112	Aerosol synthesis and Rietveld analysis of tetragonal (β1) PdZn. Journal of Alloys and Compounds, 2011, 509, 1463-1470.	5.5	19
113	Synthesis of Highly Ordered Hydrothermally Stable Mesoporous Niobia Catalysts by Atomic Layer Deposition. ACS Catalysis, 2011, 1, 1234-1245.	11.2	132
114	Facile, surfactant-free synthesis of Pd nanoparticles for heterogeneous catalysts. Journal of Catalysis, 2011, 280, 145-149.	6.2	61
115	Enhancement of Pt catalytic activity in the hydrogenation of aldehydes. Applied Catalysis A: General, 2011, 406, 81-88.	4.3	18
116	The Sintering of Supported Pd Automotive Catalysts. ChemCatChem, 2011, 3, 1004-1014.	3.7	90
117	The Effect of Zinc Addition on the Oxidation State of Cobalt in Co/ZrO ₂ Catalysts. ChemSusChem, 2011, 4, 1679-1684.	6.8	36
118	Oxidation of 5-hydroxymethylfurfural over supported Pt, Pd and Au catalysts. Catalysis Today, 2011, 160, 55-60.	4.4	353
119	Improved hydrothermal stability of niobia-supported Pd catalysts. Applied Catalysis A: General, 2011, 397, 153-162.	4.3	72
120	Initial steps in methanol steam reforming on PdZn and ZnO surfaces: Density functional theory studies. Surface Science, 2011, 605, 750-759.	1.9	58
121	Xâ€ray Absorption Spectroscopy of Bimetallic Pt–Re Catalysts for Hydrogenolysis of Glycerol to Propanediols. ChemCatChem, 2010, 2, 1107-1114.	3.7	134
122	Small Au Nanoparticles Supported on MCM-41 Containing a Surfactant. Catalysis Letters, 2010, 135, 1-9.	2.6	8
123	Synthesis of High Surface Area ZnO(0001) Plates as Novel Oxide Supports for Heterogeneous Catalysts. Catalysis Letters, 2010, 139, 26-32.	2.6	21
124	The effect of PdZn particle size on reverse-water–gas-shift reaction. Applied Catalysis A: General, 2010, 379, 3-6.	4.3	43
125	Surface modification of solution combustion synthesized Ni/Al2O3 catalyst for aqueous-phase reforming of ethanol. International Journal of Hydrogen Energy, 2010, 35, 11700-11708.	7.1	54
126	Novel KOH-free anion-exchange membrane fuel cell: Performance comparison of alternative anion-exchange ionomers in catalyst ink. Electrochimica Acta, 2010, 55, 3404-3408.	5.2	58

Αβμαγά Κ Οάτγε

#	Article	IF	CITATIONS
127	Nucleation of Platinum on Carbon Blacks. ECS Transactions, 2010, 33, 73-82.	0.5	0
128	Bimetallic Ni Alloys for the Electrooxidation of Hydrazine in Alkaline Media. ECS Transactions, 2010, 33, 1673-1680.	0.5	9
129	Effect of Alloying Pd with Oxophillic Metals on Electro-Oxidation of Alcohols in Alkaline Media. ECS Transactions, 2010, 33, 1655-1663.	0.5	Ο
130	Model Electrode Structures for Studies of Electrocatalyst Degradation. ECS Transactions, 2010, 33, 361-368.	0.5	4
131	Aerosol-Derived Bimetallic Alloy Powders: Bridging the Gap. Journal of Physical Chemistry C, 2010, 114, 17181-17190.	3.1	33
132	Nanoparticle Size Effects on the Electrochemical Dissolution Rate of Pt. ECS Transactions, 2009, 25, 593-600.	0.5	3
133	Aging Studies of Pt/Glassy Carbon Model Electrocatalysts. Journal of the Electrochemical Society, 2009, 156, B485.	2.9	17
134	Aging Studies of Pt/Glassy Carbon Model Electrocatalysts. ECS Transactions, 2009, 16, 355-360.	0.5	2
135	Templated Pt–Sn electrocatalysts for ethanol, methanol and CO oxidation in alkaline media. Electrochimica Acta, 2009, 54, 989-995.	5.2	71
136	Carbon deposition as a deactivation mechanism of cobalt-based Fischer–Tropsch synthesis catalysts under realistic conditions. Applied Catalysis A: General, 2009, 354, 102-110.	4.3	206
137	A Comparison of the Reactivity of Pd Supported on ZnO(101Ì0) and ZnO(0001). Journal of Physical Chemistry C, 2009, 113, 7251-7259.	3.1	30
138	Density functional theory based screening of ternary alkali-transition metal borohydrides: A computational material design project. Journal of Chemical Physics, 2009, 131, 014101.	3.0	77
139	Preparation, characterization and activity of Au/Al2O3 catalysts modified by MgO. Catalysis Communications, 2009, 10, 889-893.	3.3	10
140	The Definition of "Critical Radius―for a Collection of Nanoparticles Undergoing Ostwald Ripening. Langmuir, 2009, 25, 11225-11227.	3.5	72
141	CO/FTIR Spectroscopic Characterization of Pd/ZnO/Al2O3 Catalysts for Methanol Steam Reforming. Catalysis Letters, 2008, 122, 223-227.	2.6	27
142	Synthesis and Activity of Heterogeneous Pd/Al2O3 and Pd/ZnO Catalysts Prepared from Colloidal Palladium Nanoparticles. Topics in Catalysis, 2008, 49, 227-232.	2.8	25
143	PdZnAl catalysts for the reactions of water-gas-shift, methanol steam reforming, and reverse-water-gas-shift. Applied Catalysis A: General, 2008, 342, 63-68.	4.3	62
144	A comparative study of Os-hydrotalcites for the cis-dihydroxylation of cyclohexene. Applied Catalysis A: General, 2008, 350, 96-102.	4.3	13

#	Article	IF	CITATIONS
145	Stability of bimetallic Pd–Zn catalysts for the steam reforming of methanol. Journal of Catalysis, 2008, 257, 64-70.	6.2	174
146	Controlling ZnO morphology for improved methanol steam reforming reactivity. Physical Chemistry Chemical Physics, 2008, 10, 5584.	2.8	63
147	Support Effects on Adatom Emission from Nanoparticles. Microscopy and Microanalysis, 2008, 14, 182-183.	0.4	0
148	Imaging of Gold Nanoparticles within Mesoporous Silica Supports. Microscopy and Microanalysis, 2008, 14, 178-179.	0.4	0
149	Nanoparticle Arrays on Glassy Carbon as Model Fuel Cell Electrocatalysts. ECS Meeting Abstracts, 2008, , .	0.0	0
150	Synthesis and Self-Assembly of fcc Phase FePt Nanorods. Journal of the American Chemical Society, 2007, 129, 6348-6349.	13.7	114
151	Interaction of CO with surface PdZn alloys. Surface Science, 2007, 601, 5546-5554.	1.9	66
152	Fe-Ru small particle bimetallic catalysts supported on carbon nanotubes for use in Fischer–Tröpsch synthesis. Applied Catalysis A: General, 2007, 328, 243-251.	4.3	96
153	Coating of steam reforming catalysts in non-porous multi-channeled microreactors. Catalysis Today, 2007, 125, 11-15.	4.4	25
154	Coke formation on WO3/SiO2 metathesis catalysts. Applied Catalysis A: General, 2007, 318, 155-159.	4.3	17
155	Mesoporous silica supports for improved thermal stability in supported Au catalysts. Topics in Catalysis, 2007, 44, 253-262.	2.8	88
156	Model oxide supports for studies of catalyst sintering at elevated temperatures. Topics in Catalysis, 2007, 46, 3-9.	2.8	41
157	Nanostructured Anode Pt–Ru Electrocatalysts for Direct Methanol Fuel Cells. Topics in Catalysis, 2007, 46, 334-338.	2.8	14
158	Atomic-Scale Imaging of Supported Metal Nanocluster Catalysts in the Working State. Advances in Catalysis, 2006, 50, 77-95.	0.2	37
159	Particle size distributions in heterogeneous catalysts: What do they tell us about the sintering mechanism?. Catalysis Today, 2006, 111, 59-67.	4.4	287
160	Wall coating behavior of catalyst slurries in non-porous ceramic microstructures. Chemical Engineering Science, 2006, 61, 5678-5685.	3.8	21
161	Synthesis and reactivity of gold nanoparticles supported on transition metal doped mesoporous silica. Microporous and Mesoporous Materials, 2006, 95, 118-125.	4.4	37
162	Modeling of curvature in multilayered epitaxially grown films. International Journal of Mechanics and Materials in Design, 2006, 3, 265-275.	3.0	0

#	Article	IF	CITATIONS
163	Effect of alumina and titania on the oxidation of CO over Au nanoparticles evaluated by 13C isotopic transient analysis. Journal of Catalysis, 2006, 238, 458-467.	6.2	51
164	The role of PdZn alloy formation and particle size on the selectivity for steam reforming of methanol. Journal of Catalysis, 2006, 243, 420-427.	6.2	146
165	Growth of high-quality GaAs on Geâ^•Si1â^'xGex on nanostructured silicon substrates. Applied Physics Letters, 2006, 88, 251909.	3.3	21
166	Epitaxial growth of high-quality Ge films on nanostructured silicon substrates. Applied Physics Letters, 2006, 88, 204104.	3.3	12
167	Electron Energy Loss Spectroscopy (EELS) of Iron Fischer–Tropsch Catalysts. Microscopy and Microanalysis, 2006, 12, 124-134.	0.4	48
168	Understanding preparation variables in the synthesis of Au/Al2O3 using EXAFS and electron microscopy. Applied Catalysis A: General, 2005, 291, 73-84.	4.3	45
169	Heteroepitaxial growth on microscale patterned silicon structures. Journal of Crystal Growth, 2005, 280, 66-74.	1.5	15
170	Comparison of wall-coated and packed-bed reactors for steam reforming of methanol. Catalysis Today, 2005, 110, 86-91.	4.4	162
171	The influence of Pd–Ag catalyst restructuring on the activation energy for ethylene hydrogenation in ethylene–acetylene mixtures. Applied Catalysis A: General, 2005, 282, 237-245.	4.3	118
172	Phase content and particle morphology of Bi–Mo–V–O powders produced by aerosol pyrolysis. Materials Research Bulletin, 2005, 40, 1371-1387.	5.2	15
173	Nonisothermality in packed bed reactors for steam reforming of methanol. Applied Catalysis A: General, 2005, 282, 101-109.	4.3	110
174	Modeling and experiments on epitaxially grown multilayers with implications to critical thickness. Journal of Electronic Materials, 2005, 34, 522-527.	2.2	5
175	Thermal Coarsening of Supported Palladium Combustion Catalystsâ€. Journal of Physical Chemistry B, 2005, 109, 2387-2391.	2.6	36
176	Growth of high quality Geâ^•Si[sub 1â^'x]Ge[sub x] on nano-scale patterned Si structures. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 1622.	1.6	13
177	GaAs Growth on Micro and Nano Patterned Ge/Si1-XGeX and Si Surfaces. Materials Research Society Symposia Proceedings, 2005, 862, 691.	0.1	0
178	Ge Growth on Nanostructured Silicon Surfaces. Materials Research Society Symposia Proceedings, 2005, 862, 261.	0.1	1
179	Synthesis of barium titanate powders by aerosol pyrolysis of a Pechini-type precursor solution. Journal of Materials Chemistry, 2005, 15, 470.	6.7	23
180	Aerosol synthesized mesoporous silica containing high loading of alumina and zirconia. Journal of Materials Chemistry, 2005, 15, 5022.	6.7	28

Αβμαγά Κ Οάτγε

#	Article	IF	CITATIONS
181	The Role of Pore Size and Structure on the Thermal Stability of Gold Nanoparticles within Mesoporous Silica. Journal of Physical Chemistry B, 2005, 109, 2873-2880.	2.6	159
182	Modeling the Elastic Fields in Epitaxially Grown Multilayers. Materials Research Society Symposia Proceedings, 2004, 821, 54.	0.1	0
183	Heteroepitaxial growth and characterization of Ge and SiXGe1â^'X films on patterned silicon structures. Materials Research Society Symposia Proceedings, 2004, 809, B8.9.1.	0.1	1
184	Synthesis of Pt Nanowires Inside Aerosol Derived Spherical Mesoporous Silica Particles. Catalysis Letters, 2004, 98, 167-172.	2.6	14
185	Modifying irregular titania powders in a low power microwave plasma torch. AICHE Journal, 2004, 50, 2090-2100.	3.6	4
186	Coverage of palladium by silicon oxide during reduction in H2 and complete oxidation of methane. Journal of Catalysis, 2004, 225, 170-178.	6.2	26
187	Wall coating of a CuO/ZnO/Al2O3 methanol steam reforming catalyst for micro-channel reformers. Chemical Engineering Journal, 2004, 101, 113-121.	12.7	123
188	Plasma torch generation of carbon supported metal catalysts. Catalysis Today, 2004, 89, 237-244.	4.4	18
189	Attrition properties of precipitated iron Fischer–Tropsch catalysts. Applied Catalysis A: General, 2004, 266, 41-48.	4.3	24
190	Role of pore curvature on the thermal stability of gold nanoparticles in mesoporous silica. Chemical Communications, 2004, , 2620.	4.1	51
191	Gold catalysts supported on Fe- and Co-MCM-41. Studies in Surface Science and Catalysis, 2004, 154, 827-833.	1.5	5
192	A Systematic Study of the Use of DL-Tartaric Acid in the Synthesis of Silica Materials Obtained by the Sol-Gel Method. Journal of Sol-Gel Science and Technology, 2003, 28, 307-317.	2.4	13
193	The Preparation of Highly Dispersed Au/Al2O3 by Aqueous Impregnation. Catalysis Letters, 2003, 85, 229-235.	2.6	67
194	Acetylene Hydrogenation on Au-Based Catalysts. Catalysis Letters, 2003, 86, 1-8.	2.6	179
195	Bimetallic Palladiumâ^'Platinum Dendrimer-Encapsulated Catalysts. Journal of the American Chemical Society, 2003, 125, 3708-3709.	13.7	302
196	Attrition Resistance of Supports for Iron Fischerâ^'Tropsch Catalysts. Industrial & Engineering Chemistry Research, 2003, 42, 4001-4008.	3.7	34
197	Electron microscopy of catalysts: recent achievements and future prospects. Journal of Catalysis, 2003, 216, 144-154.	6.2	92
198	Hexagonal Mesostructure in Powders Produced by Evaporation-Induced Self-Assembly of Aerosols from Aqueous Tetraethoxysilane Solutions. Langmuir, 2003, 19, 256-264.	3.5	105

#	Article	IF	CITATIONS
199	Characterization and analysis of heteroepitaxial growth on silicon structures. Microscopy and Microanalysis, 2003, 9, 372-373.	0.4	0
200	Monodisperse Mesoporous Microparticles Prepared by Evaporation-Induced Self Assembly Within Aerosols. Materials Research Society Symposia Proceedings, 2003, 775, 1111.	0.1	3
201	CATALYTIC COMBUSTION OF METHANE OVER PALLADIUM-BASED CATALYSTS. Catalysis Reviews - Science and Engineering, 2002, 44, 593-649.	12.9	522
202	Monodisperse Mesoporous Silica Microspheres Formed by Evaporation-Induced Self Assembly of Surfactant Templates in Aerosols. Advanced Materials, 2002, 14, 1301-1304.	21.0	111
203	Microwave heating of endothermic catalytic reactions: Reforming of methanol. AICHE Journal, 2002, 48, 820-831.	3.6	61
204	CO Oxidation on Supported Nano-Au Catalysts Synthesized from a [Au6(PPh3)6](BF4)2 Complex. Journal of Catalysis, 2002, 207, 247-255.	6.2	106
205	Title is missing!. Journal of Materials Science, 2002, 37, 3429-3440.	3.7	31
206	The Effect Of Catalyst Loading On The Sintering Of Supported Pd/Al2O3 Automotive Catalysts. Studies in Surface Science and Catalysis, 2001, 139, 157-164.	1.5	9
207	Sintering of Nickel Steam-Reforming Catalysts on MgAl2O4 Spinel Supports. Journal of Catalysis, 2001, 197, 200-209.	6.2	149
208	The Influence of Catalyst Restructuring on the Selective Hydrogenation of Acetylene to Ethylene. Journal of Catalysis, 2001, 203, 292-306.	6.2	144
209	Direct observation of reduction of PdO to Pd metal by in situ electron microscopy. Studies in Surface Science and Catalysis, 2000, 130, 3119-3124.	1.5	16
210	Catalyst microstructure and methane oxidation reactivity during the Pd↔PdO transformation on alumina supports. Applied Catalysis A: General, 2000, 198, 179-196.	4.3	313
211	The synthesis of attrition resistant slurry phase iron Fischer–Tropsch catalysts. Catalysis Today, 2000, 58, 233-240.	4.4	33
212	Improving the attrition resistance of slurry phase heterogeneous catalysts. Powder Technology, 2000, 110, 196-203.	4.2	25
213	Modeling of heterogeneous catalysts using simple geometry supports. Topics in Catalysis, 2000, 13, 131-138.	2.8	15
214	Phase Transformations in Iron Fischer–Tropsch Catalysts during Temperature-Programmed Reduction. Journal of Catalysis, 2000, 196, 8-17.	6.2	233
215	The nature of the active phase in iron Fischer-Tropsch catalysts. Studies in Surface Science and Catalysis, 2000, 130, 1139-1144.	1.5	46
216	In-Situ HREM Observation of Reduction of PdO to Pd Metal. Microscopy and Microanalysis, 1999, 5, 336-337.	0.4	1

#	Article	IF	CITATIONS
217	Effects of pretreatment, reaction, and promoter on microphase structure and Fischer-Tropsch activity of precipitated iron catalysts. Studies in Surface Science and Catalysis, 1999, 126, 265-272.	1.5	27
218	Characterization of slurry phase iron catalysts for Fischer–Tropsch synthesis. Applied Catalysis A: General, 1999, 186, 277-296.	4.3	108
219	TEM Study of the Microstructural Modifications of an Alumina-Supported Palladium Combustion Catalyst. Journal of Catalysis, 1999, 187, 275-284.	6.2	70
220	The Microstructure of TiO2 Photocatalyst Thin Films. Journal of Materials Science Letters, 1999, 18, 515-518.	0.5	38
221	Measuring the strength of slurry phase heterogeneous catalysts. Powder Technology, 1999, 103, 95-102.	4.2	23
222	Particle Size Distribution Inferred from Small-Angle X-ray Scattering and Transmission Electron Microscopy. Langmuir, 1999, 15, 638-641.	3.5	78
223	Tailoring Alumina Surface Chemistry for Efficient Use of Supported MoS2. Journal of Catalysis, 1998, 173, 145-156.	6.2	23
224	Photothermal Heterogeneous Oxidation of Ethanol over Pt/TiO2. Journal of Catalysis, 1998, 179, 375-389.	6.2	132
225	Attrition-determining morphology changes on iron Fischer-Tropsch catalysts. Studies in Surface Science and Catalysis, 1998, 119, 137-142.	1.5	3
226	Preparation and Evaluation of Novel Hydrous Metal Oxide (HMO)-Supported Noble Metal Catalysts. Studies in Surface Science and Catalysis, 1998, 118, 245-254.	1.5	0
227	Oxidation and Reduction of Small Palladium Particles on Silica. Microscopy and Microanalysis, 1998, 4, 278-285.	0.4	37
228	The role of catalyst activation on the activity and attrition of precipitated iron Fischer-Tropsch catalysts. Studies in Surface Science and Catalysis, 1997, , 169-174.	1.5	5
229	Deactivation and attrition of iron catalysts in synthesis gas. Studies in Surface Science and Catalysis, 1997, 111, 501-516.	1.5	18
230	Oxidation of Metalâ^'EDTA Complexes by TiO2Photocatalysis. Environmental Science & Technology, 1997, 31, 3475-3481.	10.0	132
231	Kinetics of the Microwave-Heated CO Oxidation Reaction over Alumina-Supported Pd and Pt Catalysts. Journal of Catalysis, 1997, 171, 431-438.	6.2	42
232	Title is missing!. Catalysis Letters, 1997, 47, 1-4.	2.6	43
233	Morphology of titania coatings on silica gel. Catalysis Letters, 1997, 45, 165-175.	2.6	44
234	Morphology and crystallography of nano-particulates revealed by electron holography. Scripta Materialia, 1996, 7, 137-146.	0.5	11

#	Article	IF	CITATIONS
235	Removal of Silver in Photographic Processing Waste by TiO2-Based Photocatalysis. Environmental Science & Technology, 1996, 30, 3084-3088.	10.0	75

236 Titania Coatings on Monodisperse Silica Spheres (Characterization Using 2-Propanol Dehydration and) Tj ETQq0 0 0 grgBT /Overlock 10 T

237	Kinetics of the Carbon Monoxide Oxidation Reaction Under Microwave Heating. Materials Research Society Symposia Proceedings, 1996, 430, 391.	0.1	1
238	Oxide Supported MoS2Catalysts of Unusual Morphology. Journal of Catalysis, 1996, 158, 205-216.	6.2	45
239	Hydrogenolysis and Isomerization ofn-Butane on Low-Index PtSingle Crystals and Polycrystalline Pt Foil. Journal of Catalysis, 1996, 159, 23-30.	6.2	8
240	The importance of passivation in the study of iron Fischer-Tropsch catalysts. Catalysis Letters, 1996, 37, 101-106.	2.6	68
241	Changes in microstructure and catalytic activity effected by redox cycling of rhodium upon CeO2 and Al2O3. Studies in Surface Science and Catalysis, 1995, , 237-248.	1.5	5
242	Microstructural Characterization of a Fumed Titanium Dioxide Photocatalyst. Journal of Solid State Chemistry, 1995, 115, 236-239.	2.9	142
243	Advanced electron holography: a new algorithm for image processing and a standardized quality test for the FEG electron microscope. Ultramicroscopy, 1995, 58, 97-103.	1.9	18
244	The role of sodium and structure on the catalytic behavior of alumina: I. Isopropanol dehydration activity. Applied Catalysis A: General, 1995, 132, 271-287.	4.3	27
245	The role of sodium and structure on the catalytic behavior of alumina: II. IR spectroscopy. Applied Catalysis A: General, 1995, 132, 289-308.	4.3	31
246	Attrition of precipitated iron Fischer-Tropsch catalysts. Applied Catalysis A: General, 1995, 133, 335-350.	4.3	83
247	Comparison of Metal-Support Interactions in Pt/TiO2 and Pt/CeO2. Journal of Catalysis, 1995, 155, 148-153.	6.2	152
248	Activation of Precipitated Iron Fischer-Tropsch Synthesis Catalysts. Journal of Catalysis, 1995, 156, 185-207.	6.2	321
249	High-resolution scanning electron microscopy for the characterization of supported metal catalysts. Catalysis Letters, 1995, 31, 57-64.	2.6	9
250	Electron holography reveals the internal structure of palladium nano-particles. Journal of Materials Science, 1994, 29, 5612-5614.	3.7	27
251	Interaction of Titanium Isopropoxide with Surface Hydroxyls on Silica. Journal of Catalysis, 1994, 145, 565-573.	6.2	61
252	Pt-CeO2 Contact and Its Effect on CO Hydrogenation Selectivity. Journal of Catalysis, 1994, 148, 729-736.	6.2	35

#	Article	IF	CITATIONS
253	Comparative study of supported catalyst particles by electron microscopy methods. Ultramicroscopy, 1993, 52, 282-288.	1.9	16
254	The effect of adsorbate and pretreatment on the shape and reactivity of silica-supported platinum particles. Ultramicroscopy, 1993, 51, 282-297.	1.9	47
255	Synthesis, Characterization, and Catalytic Hydrogenation Activity of Highly Dispersed Fe, Rh, and Rh/Fe Powders. Journal of Catalysis, 1993, 139, 504-512.	6.2	9
256	An Auger Electron Spectroscopy Study of the Activation of Iron Fischer-Tropsch Catalysts. Journal of Catalysis, 1993, 140, 136-149.	6.2	18
257	HREM study of structure of supported Pt catalysts. Zeitschrift Für Physik D-Atoms Molecules and Clusters, 1993, 26, 79-81.	1.0	3
258	Microstructural evaluation of strained multilayer InAsSb/InSb infrared detectors by transmission electron microscopy. Journal of Applied Physics, 1993, 73, 4232-4239.	2.5	7
259	The Effect of Rhodium Particle Size on n-BUTANE Hydrogenolysis Activity and Selectivity. Studies in Surface Science and Catalysis, 1993, 75, 2411-2414.	1.5	4
260	Interaction of platinum and ceria probed by transmission electron microscopy and catalytic reactivity. Applied Catalysis B: Environmental, 1992, 1, 191-219.	20.2	45
261	The Study of Heterogeneous Catalysts by High-Resolution Transmission Electron MicroscoDV. Catalysis Reviews - Science and Engineering, 1992, 34, 129-178.	12.9	136
262	Boron nitride fibers processed from poly(borazinylamine) solutions. Chemistry of Materials, 1992, 4, 17-19.	6.7	30
263	Effect of WO3 loading on the surface acidity of WO3/Al2O3 composite oxides. Applied Catalysis A: General, 1992, 84, 123-139.	4.3	37
264	Reactivity of novel ion-exchanged nickel/hydrous titanate catalysts. Applied Catalysis A: General, 1992, 82, 185-198.	4.3	4
265	A method for measuring the titania surface area on mixed oxides of titania and silica. Catalysis Letters, 1992, 13, 313-321.	2.6	28
266	Activation behavior of Ni/hydrous titanium oxide (HTO) catalysts. Catalysis Letters, 1992, 15, 111-122.	2.6	4
267	Transmission electron microscopy of supported molybdenum and vanadium oxides. Catalysis Letters, 1992, 15, 155-167.	2.6	10
268	Recent studies of thin films and surfaces by high-Resolution electron microscopy. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1992, 23, 1063-1070.	1.4	0
269	The effect of second-phase oxides on the catalytic properties of dispersed metals: palladium supported on 12% WO3/Al2O3. Journal of Catalysis, 1992, 138, 55-69.	6.2	18
270	The morphology of oxide-supported MOS2. Journal of Catalysis, 1992, 137, 513-522.	6.2	60

#	Article	IF	CITATIONS
271	The effect of second-phase oxides on the catalytic properties of dispersed metals: Cobalt supported on 12% WO3/Al2O3. Journal of Catalysis, 1992, 135, 200-222.	6.2	20
272	The effect of alumina structure on surface sites for alcohol dehydration. Journal of Catalysis, 1992, 138, 659-674.	6.2	66
273	Rapid-thermal annealing for quantum-well heterostructure device fabrication. IEEE Transactions on Electron Devices, 1992, 39, 41-49.	3.0	10
274	The nature of the oxide phases formed during progressive oxidation of the rhodium (111) surface. Surface Science, 1991, 245, 280-288.	1.9	40
275	Microstructure of pores in n+ silicon. Materials Letters, 1991, 11, 109-114.	2.6	5
276	Effect of homogeneous/heterogeneous precipitation on aging behavior of 2014 composite. Scripta Metallurgica Et Materialia, 1991, 25, 1315-1319.	1.0	87
277	The Oxidation Stability of Boron Nitride Thin Films on MgO and TiO2 Substrates. Materials Research Society Symposia Proceedings, 1991, 250, 275.	0.1	Ο
278	High-resolution electron microscopy of BN on MgO: A model ceramic-ceramic interface. Ultramicroscopy, 1991, 37, 153-168.	1.9	8
279	Reversal of the SMSI state on Pt/TiO2 by CO hydrogenation. Journal of Catalysis, 1991, 128, 186-197.	6.2	24
280	The formation of titanium oxide monolayer coatings on silica surfaces. Journal of Catalysis, 1991, 131, 260-275.	6.2	100
281	Homogeneous Rh-Sn alkoxide coatings on silica surfaces: A novel route for preparation of bimetallic Rh-Sn catalysts. Catalysis Letters, 1991, 8, 345-358.	2.6	9
282	Hydrolytic Condensation of Tin(IV) Alkoxide Compounds to Form Particles with Well-Defined Morphology. Journal of the American Ceramic Society, 1991, 74, 1091-1094.	3.8	31
283	Boron Nitride Coatings on Oxide Substrates: Role of Surface Modifications. Journal of the American Ceramic Society, 1991, 74, 2587-2591.	3.8	23
284	Growth and properties of GaAsSb/InGaAs superlattices on InP. Journal of Crystal Growth, 1991, 111, 628-632.	1.5	41
285	Porous Silicon Formation in Nâ^'/N+/Nâ^' Doped Structures. Journal of the Electrochemical Society, 1991, 138, 1739-1743.	2.9	20
286	Oxidative restructuring of rhodium metal surfaces: correlations between single crystals and small metal particles. The Journal of Physical Chemistry, 1991, 95, 5568-5574.	2.9	34
287	Boron Nitride and Composite Aerogels from Borazine Based Polymers. Materials Research Society Symposia Proceedings, 1990, 180, 1029.	0.1	12
288	Stability of Boron Nitride Coatings on Ceramic Substrates. Materials Research Society Symposia Proceedings, 1990, 180, 807.	0.1	7

#	Article	IF	CITATIONS
289	Alcohol dehydration over model nonporous alumina powder. Journal of Catalysis, 1990, 121, 196-201.	6.2	10
290	Characterization of surface structure in heterogeneous catalysts by high-resolution transmission electron microscopy. Ultramicroscopy, 1990, 34, 47-53.	1.9	16
291	Selective suppression of photochemical dry etching using elevated surface impurity concentrations: A new technique for selfâ€aligned etching. Journal of Applied Physics, 1990, 68, 2406-2410.	2.5	4
292	Models and polyborazine precursors for boron nitride ceramics. Chemistry of Materials, 1990, 2, 377-384.	6.7	26
293	Synthesis of boron nitride ceramics from oligomeric precursors derived from 2-(dimethylamino)-4,6-dichloroborazine. Chemistry of Materials, 1990, 2, 384-389.	6.7	23
294	Kinetics of silicon nitride crystallization in N ⁺ -implanted silicon. Journal of Materials Research, 1989, 4, 394-398.	2.6	5
295	Singleâ€crystal YBa2Cu3O7particle formation by aerosol decomposition. Journal of Applied Physics, 1989, 65, 2149-2151.	2.5	32
296	Reversibility of strong metal-support interactions on Rh/TiO2. Journal of Catalysis, 1989, 118, 227-237.	6.2	103
297	The oxidation of small rhodium metal particles. Ultramicroscopy, 1989, 31, 132-137.	1.9	38
298	Synthesis of boron nitride ceramics from 2,4,6-triaminoborazine. Inorganic Chemistry, 1989, 28, 4053-4055.	4.0	40
299	Formation of boron nitride coatings on metal oxides. Chemistry of Materials, 1989, 1, 486-489.	6.7	32
300	Pore structure characterization of porous films. Langmuir, 1989, 5, 459-466.	3.5	24
301	Butane hydrogenolysis over single-crystal rhodium catalysts. Faraday Discussions of the Chemical Society, 1989, 87, 337.	2.2	12
302	Novel Approach for High Resolution Tem Studies of Ceramic-Ceramic Interfaces. Materials Research Society Symposia Proceedings, 1989, 153, 97.	0.1	3
303	The use of nonporous oxide particles for imaging the shape and structure of small crystallites in heterogeneous catalysts. Ultramicroscopy, 1988, 25, 203-208.	1.9	27
304	The origin of the support effect in MgO-supported catalysts. Journal of Catalysis, 1988, 112, 595-598.	6.2	21
305	Transmission electron microscopy of Ru supported on model oxide surfaces. Journal of Catalysis, 1988, 109, 76-88.	6.2	34
306	Direct observation of the surfaces of small metal crystallites: rhodium supported on titania. Langmuir, 1988, 4, 827-830.	3.5	109

#	Article	IF	CITATIONS
307	Asymmetric tilt boundaries and generalized heteroepitaxy. Physical Review Letters, 1988, 61, 2681-2684.	7.8	42
308	Coherent precipitation of silicon nitride in silicon. Applied Physics Letters, 1988, 52, 1782-1784.	3.3	12
309	Electron-beam induced nucleation and redispersion of ruthenium on MgO supports. Proceedings Annual Meeting Electron Microscopy Society of America, 1988, 46, 704-705.	0.0	0
310	Structure and Reactivity of RH in the SMSI State. Materials Research Society Symposia Proceedings, 1987, 111, 35.	0.1	4
311	The Use of Glass Slides for Preparing Cross-Section TEM Samples of Discrete Transistors. Materials Research Society Symposia Proceedings, 1987, 115, 109.	0.1	3
312	The effect of catalyst preparation conditions on the morphology of MgO catalyst supports. Applied Catalysis, 1987, 34, 199-213.	0.8	43
313	Selective porous silicon formation in buriedp+layers. Journal of Applied Physics, 1987, 62, 4182-4186.	2.5	21
314	Synthesis of boron nitride ceramics from poly(borazinylamine) precursors. Journal of the American Chemical Society, 1987, 109, 5556-5557.	13.7	74
315	Oxidation-reduction treatment of rhodium supported on nonporous silica spheres. Journal of Catalysis, 1987, 108, 444-451.	6.2	27
316	Application of high-resolution analytical electron microscopy to the analysis of automotive catalysts. Industrial & Engineering Chemistry Product Research and Development, 1985, 24, 6-10.	0.5	15
317	CO hydrogenation catalyzed by alumina-supported osmium: Particle size effects. Journal of Catalysis, 1985, 95, 370-384.	6.2	15
318	Fischer-Tropsch synthesis on bimetallic ruthenium-gold catalysts. Journal of Catalysis, 1985, 93, 256-269.	6.2	45
319	Gold-titania interactions: Temperature dependence of surface area and crystallinity of TiO2 and gold dispersion. Journal of Catalysis, 1984, 87, 265-275.	6.2	55
320	Liquid distribution and electrical conductivity in foam. International Journal of Multiphase Flow, 1983, 9, 627-636.	3.4	32
321	Leveraging Students' Funds of Knowledge in Chemical Engineering Design Challenges Supports Persistence Intentions. Journal of Chemical Education, 0, , .	2.3	0
322	MgO(111) Nanocatalyst for Biomass Conversion: A Study of Carbon Coating Effects on Catalyst Faceting and Performance. Catalysis Letters, 0, , 1.	2.6	1
323	Gas-Phase Hydrogen-Atom Measurement above Catalytic and Noncatalytic Materials during Ethane Dehydrogenation. Journal of Physical Chemistry C, O, ,	3.1	2