List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5806417/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mitotic arrest affects clustering of tumor cells. Cell Division, 2021, 16, 2.	1.1	5
2	Quantitative Analysis of Cell Aggregation Dynamics Identifies HDAC Inhibitors as Potential Regulators of Cancer Cell Clustering. Cancers, 2021, 13, 5840.	1.7	1
3	Measure and characterization of the forces exerted by growing multicellular spheroids using microdevice arrays. PLoS ONE, 2019, 14, e0217227.	1.1	15
4	Characterization of the physical properties of tumor-derived spheroids reveals critical insights for pre-clinical studies. Scientific Reports, 2019, 9, 6597.	1.6	43
5	A checkpoint-oriented cell cycle simulation model. Cell Cycle, 2019, 18, 795-808.	1.3	10
6	Gap junctions contribute to anchorage-independent clustering of breast cancer cells. BMC Cancer, 2018, 18, 221.	1.1	14
7	Impact of physical confinement on nuclei geometry and cell division dynamics in 3D spheroids. Scientific Reports, 2018, 8, 8785.	1.6	43
8	In vitro micronucleus test in living cells associating biological tracers and high-content imaging. Toxicology Letters, 2017, 280, S322.	0.4	0
9	Are Tumor Cell Lineages Solely Shaped by Mechanical Forces?. Bulletin of Mathematical Biology, 2017, 79, 2356-2393.	0.9	3
10	Reversible growth arrest of 3D tumor spheroids stored in oxygen absorber-induced anoxia. Oncology Letters, 2017, 15, 2006-2009.	0.8	2
11	Short and long time effects of low temperature Plasma Activated Media on 3D multicellular tumor spheroids. Scientific Reports, 2016, 6, 21421.	1.6	126
12	Chromatibody, a novel non-invasive molecular tool to explore and manipulate chromatin in living cells. Journal of Cell Science, 2016, 129, 2673-83.	1.2	37
13	Evaluation by quantitative image analysis of anticancer drug activity on multicellular spheroids grown in 3D matrices. Oncology Letters, 2016, 12, 4371-4376.	0.8	4
14	Structure Tensor Based Analysis of Cells and Nuclei Organization in Tissues. IEEE Transactions on Medical Imaging, 2016, 35, 294-306.	5.4	13
15	Chromatibody, a novel non-invasive molecular tool to explore and manipulate chromatin in living cells. Development (Cambridge), 2016, 143, e1.2-e1.2.	1.2	1
16	Oxygen Partial Pressure Is a Rate-Limiting Parameter for Cell Proliferation in 3D Spheroids Grown in Physioxic Culture Condition. PLoS ONE, 2016, 11, e0161239.	1.1	41
17	Abstract 5053: Tumor cell clustering - Identification of new regulators. , 2016, , .		0
18	High-resolution in-depth imaging of optically cleared thick samples using an adaptive SPIM. Scientific Reports, 2015, 5, 16898.	1.6	43

#	Article	IF	CITATIONS
19	3D print customized sample holders for live light sheet microscopy. Biochemical and Biophysical Research Communications, 2015, 463, 1141-1143.	1.0	19
20	Cell–Cell Adhesion and Cytoskeleton Tension Oppose Each Other in Regulating Tumor Cell Aggregation. Cancer Research, 2015, 75, 2426-2433.	0.4	59
21	Monitoring the Activation of the DNA Damage Response Pathway in a 3D Spheroid Model. PLoS ONE, 2015, 10, e0134411.	1.1	5
22	Abstract 327: 3D dynamics of the response to cell cycle checkpoint targeting drugs in multicellular tumour spheroids. , 2015, , .		0
23	Low-temperature plasma-induced antiproliferative effects on multi-cellular tumor spheroids. New Journal of Physics, 2014, 16, 043027.	1.2	66
24	Microdevice arrays of high aspect ratio poly(dimethylsiloxane) pillars for the investigation of multicellular tumour spheroid mechanical properties. Lab on A Chip, 2014, 14, 2344-2353.	3.1	18
25	Light-scattering by aggregates of tumor cells: Spectral, polarimetric, and angular measurements. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 146, 207-213.	1.1	13
26	Abstract 2025: Multicellular tumor spheroid 3D models to decipher cancer cell biology and to evaluate anticancer drugs. , 2014, , .		0
27	A versatile sample holder for single plane illumination microscopy. Journal of Microscopy, 2013, 251, 128-132.	0.8	17
28	Multicellular tumor spheroid models to explore cell cycle checkpoints in 3D. BMC Cancer, 2013, 13, 73.	1.1	107
29	CDC25B Overexpression Stabilises Centrin 2 and Promotes the Formation of Excess Centriolar Foci. PLoS ONE, 2013, 8, e67822.	1.1	24
30	Mechanical Stress Impairs Mitosis Progression in Multi-Cellular Tumor Spheroids. PLoS ONE, 2013, 8, e80447.	1.1	52
31	Abstract 4404: Multicellular tumor spheroid models to evaluate drugs targeting cell cycle checkpoints in 3D Cancer Research, 2013, 73, 4404-4404.	0.4	2
32	Abstract 560: Mechanical stress activates a mitotic checkpoint in multicellular tumor spheroids , 2013, , .		0
33	Checkpoint oriented cell-cycle simulation. , 2012, , .		2
34	Evaluation of checkpoint kinase targeting therapy in Acute Myeloid Leukemia with complex karyotype. Cancer Biology and Therapy, 2012, 13, 307-313.	1.5	17
35	The CDC25B phosphatase shortens the G2 phase of neural progenitors and promotes efficient neuron production. Development (Cambridge), 2012, 139, 1095-1104.	1.2	35
36	Hyperspectral polarized light scattering to study tumor cells in in-vitro samples. Proceedings of SPIE, 2012, , .	0.8	1

#	Article	IF	CITATIONS
37	The cell cycle regulator CDC25A is a target for JAK2V617F oncogene. Blood, 2012, 119, 1190-1199.	0.6	34
38	Synthesis and biological evaluation of analogs of the marine alkaloids granulatimide and isogranulatimide. European Journal of Medicinal Chemistry, 2012, 54, 626-636.	2.6	26
39	Deep and Clear Optical Imaging of Thick Inhomogeneous Samples. PLoS ONE, 2012, 7, e35795.	1.1	52
40	A Checkpoint-Orientated Modelling for Cell Cycle Simulation. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2012, , 40-47.	0.2	1
41	The CDC25B phosphatase shortens the G2 phase of neural progenitors and promotes efficient neuron production. Journal of Cell Science, 2012, 125, e1-e1.	1.2	0
42	Study of the docking-dependent PLK1 phosphorylation of the CDC25B phosphatase. Biochemical and Biophysical Research Communications, 2011, 410, 87-90.	1.0	22
43	CDC25B associates with a centrin 2-containing complex and is involved in maintaining centrosome integrity. Biology of the Cell, 2011, 103, 55-68.	0.7	17
44	Live cell division dynamics monitoring in 3D large spheroid tumor models using light sheet microscopy. Cell Division, 2011, 6, 22.	1.1	78
45	Identification of N-Terminally Truncated Stable Nuclear Isoforms of CDC25B That Are Specifically Involved in G2/M Checkpoint Recovery. Cancer Research, 2011, 71, 1968-1977.	0.4	18
46	5-Substituted [1]pyrindine derivatives with antiproliferative activity. European Journal of Medicinal Chemistry, 2010, 45, 896-901.	2.6	6
47	UVâ€induced downregulation of the CDC25B protein in human cells. FEBS Letters, 2010, 584, 1199-1204.	1.3	8
48	Mitotic Phosphorylation of Cdc25B Ser321 Disrupts 14-3-3 Binding to the High Affinity Ser323 Site. Journal of Biological Chemistry, 2010, 285, 34364-34370.	1.6	23
49	A screen for deubiquitinating enzymes involved in the G ₂ /M checkpoint identifies USP50 as a regulator of HSP90-dependent Wee1 stability. Cell Cycle, 2010, 9, 3839-3846.	1.3	43
50	Unscheduled expression of CDC25B in S-phase leads to replicative stress and DNA damage. Molecular Cancer, 2010, 9, 29.	7.9	23
51	Microcephalin and pericentrin regulate mitotic entry via centrosome-associated Chk1. Journal of Cell Biology, 2009, 185, 1149-1157.	2.3	83
52	3D imaging of the response to CDC25 inhibition in multicellular spheroids. Cancer Biology and Therapy, 2009, 8, 2228-2234.	1.5	14
53	Pharmacological inhibition of Aurora-A but not Aurora-B impairs interphase microtubule dynamics. Cell Cycle, 2009, 8, 1733-1737.	1.3	18
54	Constitutive Activation of the DNA Damage Signaling Pathway in Acute Myeloid Leukemia with Complex Karyotype: Potential Importance for Checkpoint Targeting Therapy. Cancer Research, 2009, 69, 8652-8661.	0.4	67

#	Article	IF	CITATIONS
55	The polo-like kinase 1 regulates CDC25B-dependent mitosis entry. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 462-468.	1.9	51
56	IRCâ€083864, a novel bis quinone inhibitor of CDC25 phosphatases active against human cancer cells. International Journal of Cancer, 2009, 124, 1449-1456.	2.3	50
57	Development of Novel Thiazolopyrimidines as CDC25B Phosphatase Inhibitors. ChemMedChem, 2009, 4, 633-648.	1.6	84
58	Inside Cover: Development of Novel Thiazolopyrimidines as CDC25B Phosphatase Inhibitors (ChemMedChem 4/2009). ChemMedChem, 2009, 4, 482-482.	1.6	0
59	OPA1 functions in mitochondria and dysfunctions in optic nerve. International Journal of Biochemistry and Cell Biology, 2009, 41, 1866-1874.	1.2	72
60	Novel naphthoquinone and quinolinedione inhibitors of CDC25 phosphatase activity with antiproliferative properties. Bioorganic and Medicinal Chemistry, 2008, 16, 9040-9049.	1.4	22
61	Evaluation of Polo-like Kinase 1 inhibition on the G2/M checkpoint in Acute Myelocytic Leukaemia. European Journal of Pharmacology, 2008, 591, 102-105.	1.7	22
62	NanoLC-MS/MS Analysis Provides New Insights into the Phosphorylation Pattern of Cdc25B in Vivo: Full Overlap with Sites of Phosphorylation by Chk1 and Cdk1/cycB Kinases in Vitro. Journal of Proteome Research, 2008, 7, 1264-1273.	1.8	12
63	Receptor-Based Virtual Ligand Screening for the Identification of Novel CDC25 Phosphatase Inhibitors. Journal of Chemical Information and Modeling, 2008, 48, 157-165.	2.5	43
64	Interaction of p21 CDKN1A with PCNA regulates the histone acetyltransferase activity of p300 in nucleotide excision repair. Nucleic Acids Research, 2008, 36, 1713-1722.	6.5	52
65	Asymmetric localization of the CDC25B phosphatase to the mother centrosome during interphase. Cell Cycle, 2008, 7, 401-406.	1.3	30
66	The "starter" and "gas pedal" of mitosis reside at the centrosome: Commentary on "Characterization of centrosomal localization and dynamics of CDC25C phosphatase in mitosis" by Bonnet et al Cell Cycle, 2008, 7, 1893-1894.	1.3	1
67	Cell Cycle Control by the CDC25 Phosphatases. Anti-Cancer Agents in Medicinal Chemistry, 2008, 8, 818-824.	0.9	111
68	Moderate variations in CDC25B protein levels modulate the response to DNA damaging agents. Cell Cycle, 2008, 7, 2234-2240.	1.3	20
69	A new mitotic-cell specific monoclonal antibody. Cell Cycle, 2008, 7, 267-268.	1.3	10
70	Pharmacologic inhibition of CDC25 phosphatases impairs interphase microtubule dynamics and mitotic spindle assembly. Molecular Cancer Therapeutics, 2007, 6, 318-325.	1.9	29
71	CDC25B Involvement in the Centrosome Duplication Cycle and in Microtubule Nucleation. Cancer Research, 2007, 67, 11557-11564.	0.4	58
72	Linking PCNA-dependent replication and ATR by human Claspin. Biochemical and Biophysical Research Communications, 2007, 354, 1028-1033.	1.0	10

#	Article	IF	CITATIONS
73	Phosphorylation of CDC25C at S263 controls its intracellular localisation. FEBS Letters, 2007, 581, 3979-3985.	1.3	6
74	CDC25 phosphatases in cancer cells: key players? Good targets?. Nature Reviews Cancer, 2007, 7, 495-507.	12.8	618
75	What's new on CDC25 phosphatase inhibitors. , 2007, 115, 1-12.		67
76	ldentification of an unexpected link between the Shh pathway and a G2/M regulator, the phosphatase CDC25B. Developmental Biology, 2006, 294, 133-147.	0.9	37
77	Synthesis and biological evaluation of novel heterocyclic quinones as inhibitors of the dual specificity protein phosphatase CDC25C. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 171-175.	1.0	30
78	The when and wheres of CDC25 phosphatases. Current Opinion in Cell Biology, 2006, 18, 185-191.	2.6	389
79	CDC25B Phosphorylation by p38 and MK-2. Cell Cycle, 2006, 5, 1649-1653.	1.3	49
80	CHK1 phosphorylates CDC25B during the cell cycle in the absence of DNA damage. Journal of Cell Science, 2006, 119, 4269-4275.	1.2	90
81	Genotoxic-activated G2-M checkpoint exit is dependent on CDC25B phosphatase expression. Molecular Cancer Therapeutics, 2006, 5, 1446-1451.	1.9	49
82	Cell Adhesion Regulates CDC25A Expression and Proliferation in Acute Myeloid Leukemia. Cancer Research, 2006, 66, 7128-7135.	0.4	43
83	Design, synthesis, and biological evaluation of novel naphthoquinone derivatives with CDC25 phosphatase inhibitory activity. Bioorganic and Medicinal Chemistry, 2005, 13, 4871-4879.	1.4	51
84	Cytolethal distending toxins: A paradigm for bacterial cyclostatins. , 2005, , 53-80.		0
85	Inhibition of human tumor cell growth in vivo by an orally bioavailable inhibitor of CDC25 phosphatases. Molecular Cancer Therapeutics, 2005, 4, 1378-1387.	1.9	72
86	CDC25B Phosphorylated by pEg3 Localizes to the Centrosome and the Spindle Poles at Mitosis. Cell Cycle, 2005, 4, 806-811.	1.3	48
87	CDC25B Phosphorylation by Aurora A Occurs at the G2/M Transition and is Inhibited by DNA Damage. Cell Cycle, 2005, 4, 1233-1238.	1.3	105
88	A Novel Synthetic Inhibitor of CDC25 Phosphatases. Cancer Research, 2004, 64, 3320-3325.	0.4	63
89	Evolutionary Conservation of a Novel Splice Variant of the Cds1/CHK2 Checkpoint Kinase Restricted to its Regulatory Domain. Cell Cycle, 2004, 3, 1267-1270.	1.3	3
90	A fission yeast strain expressing human CDC25A phosphatase: a tool for selectivity studies of pharmacological inhibitors of CDC25. Current Genetics, 2004, 45, 283-288.	0.8	6

#	Article	IF	CITATIONS
91	Ability of human CDC25B phosphatase splice variants to replace the function of the fission yeast Cdc25 cell cycle regulator. FEMS Yeast Research, 2004, 5, 205-211.	1.1	3
92	Synthesis of small molecule CDC25 phosphatases inhibitors. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 5809-5812.	1.0	27
93	Phosphorylation of CDC25B by Aurora-A at the centrosome contributes to the G2â \in "M transition. Journal of Cell Science, 2004, 117, 2523-2531.	1.2	232
94	Distinct pools of proliferating cell nuclear antigen associated to DNA replication sites interact with the p125 subunit of DNA polymerase Ĩ´or DNA ligase I. Experimental Cell Research, 2004, 293, 357-367.	1.2	27
95	PKB/Akt phosphorylates the CDC25B phosphatase and regulates its intracellular localisation. Biology of the Cell, 2003, 95, 547-554.	0.7	34
96	Protein kinase CK2 regulates CDC25B phosphatase activity. Oncogene, 2003, 22, 220-232.	2.6	73
97	LIM-only protein FHL3 interacts with CDC25B2 phosphatase. Experimental Cell Research, 2003, 285, 99-106.	1.2	11
98	p21CDKN1A Does Not Interfere with Loading of PCNA at DNA Replication Sites, but Inhibits Subsequent Binding of DNA Polymerase D at the G1/S Phase Transition. Cell Cycle, 2003, 2, 595-602.	1.3	43
99	p21CDKN1A does not interfere with loading of PCNA at DNA replication sites, but inhibits subsequent binding of DNA polymerase delta at the G1/S phase transition. Cell Cycle, 2003, 2, 596-603.	1.3	25
100	Inhibitors of the CDC25 phosphatases. Progress in Cell Cycle Research, 2003, 5, 225-34.	0.9	12
101	Nuclear Localization of CDC25B1 and Serine 146 Integrity Are Required for Induction of Mitosis. Journal of Biological Chemistry, 2002, 277, 35176-35182.	1.6	19
102	Human CDC25B and CDC25C differ by their ability to restore a functional checkpoint response after gene replacement in fission yeast. Biochemical and Biophysical Research Communications, 2002, 295, 673-677.	1.0	6
103	The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space. FEBS Letters, 2002, 523, 171-176.	1.3	348
104	What similarity between human and fission yeast proteins is required for orthology?. Yeast, 2002, 19, 1125-1126.	0.8	12
105	Human pEg3 kinase associates with and phosphorylates CDC25B phosphatase: a potential role for pEg3 in cell cycle regulation. Oncogene, 2002, 21, 7630-7641.	2.6	94
106	Etoposide and Adriamycin but Not Genistein Can Activate the Checkpoint Kinase Chk2 Independently of ATM/ATR. Biochemical and Biophysical Research Communications, 2001, 289, 1199-1204.	1.0	28
107	Study of the cytolethal distending toxin (CDT)-activated cell cycle checkpoint. FEBS Letters, 2001, 491, 261-265.	1.3	25
108	Involvement of the Interaction between p21 and Proliferating Cell Nuclear Antigen for the Maintenance of G2/M Arrest after DNA Damage. Journal of Biological Chemistry, 2001, 276, 42971-42977.	1.6	155

#	Article	IF	CITATIONS
109	Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nature Genetics, 2000, 26, 207-210.	9.4	1,275
110	Specific interaction between 14-3-3 isoforms and the human CDC25B phosphatase. Oncogene, 2000, 19, 1257-1265.	2.6	94
111	Regulation of CDC25B phosphatases subcellular localization. Oncogene, 2000, 19, 2179-2185.	2.6	98
112	Distinct Chk2 Activation Pathways Are Triggered by Genistein and DNA-damaging Agents in Human Melanoma Cells. Journal of Biological Chemistry, 2000, 275, 15363-15369.	1.6	57
113	Study of the Cytolethal Distending Toxin-Induced Cell Cycle Arrest in HeLa Cells: Involvement of the CDC25 Phosphatase. Experimental Cell Research, 2000, 257, 206-212.	1.2	44
114	Cyclin E–Cdk2 Phosphorylation Promotes Late G1-Phase Degradation of MyoD in Muscle Cells. Experimental Cell Research, 2000, 259, 300-307.	1.2	57
115	Induced overexpression of P21(WAFI) causes de novo expression of MUC2 gene in a colon carcinoma cell line by inhibition of promoter methylation. Gastroenterology, 2000, 118, A591.	0.6	0
116	Proteasome-dependent degradation of human CDC25B phosphatase. Molecular Biology Reports, 1999, 26, 53-57.	1.0	21
117	Interaction between the fission yeast nim1/cdr1 protein kinase and a dynamin-related protein. FEBS Letters, 1999, 443, 71-74.	1.3	4
118	Phosphorylation of the myristoylated protein kinase C substrate MARCKS by the cyclin E–cyclin-dependent kinase 2 complex in vitro. Biochemical Journal, 1999, 340, 775-782.	1.7	16
119	p21 binding to PCNA causes G1 and G2 cell cycle arrest in p53-deficient cells. Oncogene, 1998, 16, 311-320.	2.6	307
120	Interaction with cyclin-dependent kinases and PCNA modulates proteasome-dependent degradation of p21. Oncogene, 1998, 17, 2437-2444.	2.6	134
121	A new fission yeast dynamin-related gene involved in mitochondrial biogenesis. Biology of the Cell, 1998, 90, 115-115.	0.7	0
122	Identification of a Fission Yeast Dynamin-Related Protein Involved in Mitochondrial DNA Maintenance. Biochemical and Biophysical Research Communications, 1998, 251, 720-726.	1.0	72
123	Inhibition of the interaction between the CDC25 phosphatase cell cycle activator and the 14.3.3 proteins. Expert Opinion on Therapeutic Targets, 1998, 2, 105-107.	1.0	0
124	Les phosphatases CDC25 : régulateurs du cycle cellulaire et oncogènes potentiels Medecine/Sciences, 1998, 14, 269.	0.0	1
125	Phosphorylation of Human CDC25B Phosphatase by CDK1-Cyclin A Triggers Its Proteasome-dependent Degradation. Journal of Biological Chemistry, 1997, 272, 32731-32734.	1.6	90
126	Role of the Fission Yeast nim1 Protein Kinase in the Cell Cycle Response to Nutritional Signals. Biochemical and Biophysical Research Communications, 1997, 232, 204-208.	1.0	13

#	Article	IF	CITATIONS
127	Evidence for a Mammalian Nim1-like Kinase Pathway Acting at the G0-1/S Transition. Biochemical and Biophysical Research Communications, 1997, 236, 130-134.	1.0	3
128	Alternative splicing of the human CDC25B tyrosine phosphatase. Possible implications for growth control?. Oncogene, 1997, 14, 2485-2495.	2.6	96
129	P III B.5 Activation of the proto-oncogene H RAS by DNA polymerase β mediated translesion synthesis. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1997, 379, S22.	0.4	Ο
130	Interaction entre l'inhibiteur des kinases dépendantes des cyclines p21 et le PCNA : un lien entre un cycle cellulaire, la réplication et la réparation de l'ADN. Medecine/Sciences, 1997, 13, 1259.	0.0	1
131	IDENTIFICATION OF A DYNAMIN RELATED PROTEIN IN THE FISSION YEAST SCHIZOSACCHAROMYCES POMBE. Biology of the Cell, 1996, 88, 71-71.	0.7	0
132	Characterisation of human cdc2 lysine 33 mutations expressed in the fission yeastSchizosaccharomyces pombe. FEBS Letters, 1996, 379, 217-221.	1.3	5
133	Interaction studies between the p21Cip1/Waf1 cyclin-dependent kinase inhibitor and proliferating cell nuclear antigen (PCNA) by surface plasmo resonance. FEBS Letters, 1996, 391, 66-70.	1.3	25
134	THE CYCLIN-DEPENDENT KINASE INHIBITOR P21CIP1: MODES OF ACTION AND ROLE IN RESISTANCE TO ANTITUMOR AGENTS. Biology of the Cell, 1996, 88, 70-70.	0.7	0
135	Effects of phleomycin-induced DNA damage on the fission yeastSchizosaccharomyces pombe cell cycle. Yeast, 1995, 11, 225-231.	0.8	12
136	Mechanism of Inhibition of Proliferating Cell Nuclear Antigen-Dependent DNA Synthesis by the Cyclin-Dependent Kinase Inhibitor p21. Biochemistry, 1995, 34, 8869-8875.	1.2	124
137	Effect of phenylarsine oxide on the fission yeast Schizosaccharomyces pombe cell cycle. Biochimie, 1995, 77, 279-287.	1.3	7
138	Effects of TGF-β1 (transforming growth factor-β1) on the cell cycle regulation of human breast adenocarcinoma (MCF-7) cells. FEBS Letters, 1995, 362, 295-300.	1.3	37
139	Characterization of an active GST-human Cdc2 fusion protein kinase expressed in the fission yeastSchizosaccharomyces pombe: A new approach to the study of cell cycle control proteins. Yeast, 1994, 10, 1631-1638.	0.8	6
140	cdc2 Protein Kinase: Interactions with Cyclins and sucl. Cold Spring Harbor Symposia on Quantitative Biology, 1991, 56, 515-521.	2.0	4
141	Distinct nuclear and spindle pole body populations of cyclin–cdc2 in fission yeast. Nature, 1990, 347, 680-682.	13.7	210
142	A versatile microtiter assay for the universal cdc2 cell cycle regulator. Analytical Biochemistry, 1990, 187, 94-97.	1.1	12
143	Regulation of tubulin synthesis during the cell cycle in the synchronous plasmodia ofPhysarum polycephalum. Journal of Cellular Physiology, 1990, 145, 120-128.	2.0	3
144	Direct activation of cdc2 with phosphatase: identification of p13 ^{sucl} â€sensitive and insensitive steps. FEBS Letters, 1990, 266, 4-8.	1.3	38

#	ARTICLE	IF	CITATIONS
145	Fission yeast CDC25 is a cell-cycle regulated protein. Biochemical and Biophysical Research Communications, 1990, 167, 301-309.	1.0	76
146	Variation of the immunolabelling of the α1-isotubulin in the mitotic spindle ofPhysarum polycephalum. Protoplasma, 1989, 148, 120-129.	1.0	8
147	Microtubule cytoskeleton and morphogenesis in the amoebae of the myxomycete Physarum polycephalum. Biology of the Cell, 1988, 63, 239-248.	0.7	15
148	Checkpoint Orientated Cell Cycle Modeling Issues in Simulation of Synchronized Situation. , 0, , .		3