
Shuying Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5806351/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Macrophage RGS12 contributes to osteoarthritis pathogenesis through enhancing the ubiquitination. Genes and Diseases, 2022, 9, 1357-1367.	1.5	24
2	RGS12 inhibits the progression and metastasis of multiple myeloma by driving M1 macrophage polarization and activation in the bone marrow microenvironment. Cancer Communications, 2022, 42, 60-64.	3.7	19
3	Verteporfin Inhibits the Progression of Spontaneous Osteosarcoma Caused by Trp53 and Rb1 Deficiency in Ctsk-Expressing Cells via Impeding Hippo Pathway. Cells, 2022, 11, 1361.	1.8	11
4	Deletion of Trp53 and Rb1 in Ctskâ€expressing cells drives osteosarcoma progression by activating glucose metabolism and YAP signaling. MedComm, 2022, 3, .	3.1	9
5	Effect of Regulator of G Protein Signaling Proteins on Bone. Frontiers in Endocrinology, 2022, 13, 842421.	1.5	7
6	Type II collagen-positive progenitors are important stem cells in controlling skeletal development and vascular formation. Bone Research, 2022, 10, .	5.4	8
7	IFT80 negatively regulates osteoclast differentiation via association with Cbl-b to disrupt TRAF6 stabilization and activation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	6
8	IFT20 governs mesenchymal stem cell fate through positively regulating TGF-β-Smad2/3-Glut1 signaling mediated glucose metabolism. Redox Biology, 2022, 54, 102373.	3.9	5
9	Mice with Trp53 and Rb1 deficiency in chondrocytes spontaneously develop chondrosarcoma via overactivation of YAP signaling. Cell Death and Disease, 2022, 13, .	2.7	3
10	Trp53 controls chondrogenesis and endochondral ossification by negative regulation of TAZ activity and stability via β-TrCP-mediated ubiquitination. Cell Death Discovery, 2022, 8, .	2.0	2
11	Bone marrow adipogenic lineage precursors promote osteoclastogenesis in bone remodeling and pathologic bone loss. Journal of Clinical Investigation, 2021, 131, .	3.9	101
12	The Role of the Immune Response in the Development of Medication-Related Osteonecrosis of the Jaw. Frontiers in Immunology, 2021, 12, 606043.	2.2	25
13	RGS12 is a novel tumor suppressor in osteosarcoma that inhibits YAP-TEAD1-Ezrin signaling. Oncogene, 2021, 40, 2553-2566.	2.6	19
14	Macrophage regulator of G-protein signaling 12 contributes to inflammatory pain hypersensitivity. Annals of Translational Medicine, 2021, 9, 448-448.	0.7	25
15	TAZ is required for chondrogenesis and skeletal development. Cell Discovery, 2021, 7, 26.	3.1	25
16	Type II Collagen-Positive Embryonic Progenitors are the Major Contributors to Spine and Intervertebral Disc Development and Repair. Stem Cells Translational Medicine, 2021, 10, 1419-1432.	1.6	7
17	Identification of Cilia in Different Mouse Tissues. Cells, 2021, 10, 1623.	1.8	12
18	SAG therapy restores bone growth and reduces enchondroma incidence in a model of skeletal chondrodysplasias caused by Ihh deficiency. Molecular Therapy - Methods and Clinical Development, 2021, 23, 461-475.	1.8	3

Shuying Yang

#	Article	IF	CITATIONS
19	Diabetes impairs fracture healing through disruption of cilia formation in osteoblasts. Bone, 2021, 153, 116176.	1.4	12
20	IFT80 Is Required for Fracture Healing Through Controlling the Regulation of TGFâ€Ŷ Signaling in Chondrocyte Differentiation and Function. Journal of Bone and Mineral Research, 2020, 35, 571-582.	3.1	35
21	RGS12 is required for the maintenance of mitochondrial function during skeletal development. Cell Discovery, 2020, 6, 59.	3.1	31
22	RGS12 Is a Novel Critical NF-κB Activator in Inflammatory Arthritis. IScience, 2020, 23, 101172.	1.9	38
23	Primary cilia control cell alignment and patterning in bone development via ceramide-PKCζ-β-catenin signaling. Communications Biology, 2020, 3, 45.	2.0	28
24	Ciliary IFT80 is essential for intervertebral disc development and maintenance. FASEB Journal, 2020, 34, 6741-6756.	0.2	25
25	Gli1 Defines a Subset of Fibro-adipogenic Progenitors that Promote Skeletal Muscle Regeneration With Less Fat Accumulation. Journal of Bone and Mineral Research, 2020, 36, 1159-1173.	3.1	20
26	IFT80 is required for stem cell proliferation, differentiation, and odontoblast polarization during tooth development. Cell Death and Disease, 2019, 10, 63.	2.7	19
27	Ciliary IFT80 regulates dental pulp stem cells differentiation by FGF/FGFR1 and Hh/BMP2 signaling. International Journal of Biological Sciences, 2019, 15, 2087-2099.	2.6	19
28	Extracellular Matrix and Adhesion Molecule Gene Expression in the Normal and Injured Murine Intervertebral Disc. American Journal of Physical Medicine and Rehabilitation, 2019, 98, 35-42.	0.7	14
29	Regulator of G Protein Signaling Protein 12 (Rgs12) Controls Mouse Osteoblast Differentiation via Calcium Channel/Oscillation and Cαi-ERK Signaling. Journal of Bone and Mineral Research, 2019, 34, 752-764.	3.1	19
30	Regulator of G protein signaling 12 enhances osteoclastogenesis by suppressing Nrf2-dependent antioxidant proteins to promote the generation of reactive oxygen species. ELife, 2019, 8, .	2.8	33
31	Antimicrobial Peptide Combined with BMP2-Modified Mesenchymal Stem Cells Promotes Calvarial Repair in an Osteolytic Model. Molecular Therapy, 2018, 26, 199-207.	3.7	39
32	Application of Stem Cells for Bone Regeneration in Critical-Sized Defects. Current Oral Health Reports, 2018, 5, 286-294.	0.5	0
33	Comparative Characterization of Osteoclasts Derived From Murine Bone Marrow Macrophages and RAW 264.7 Cells Using Quantitative Proteomics. JBMR Plus, 2018, 2, 328-340.	1.3	35
34	The combination of nano-calcium sulfate/platelet rich plasma gel scaffold with BMP2 gene-modified mesenchymal stem cells promotes bone regeneration in rat critical-sized calvarial defects. Stem Cell Research and Therapy, 2017, 8, 122.	2.4	38
35	Application of platelet-rich plasma with stem cells in bone and periodontal tissue engineering. Bone Research, 2016, 4, 16036.	5.4	114
36	Hybrid Biomaterial with Conjugated Growth Factors and Mesenchymal Stem Cells for Ectopic Bone Formation. Tissue Engineering - Part A, 2016, 22, 928-939.	1.6	24

SHUYING YANG

#	Article	IF	CITATIONS
37	Ciliary IFT80 balances canonical versus non-canonical hedgehog signalling for osteoblast differentiation. Nature Communications, 2016, 7, 11024.	5.8	106
38	Heparan Sulfate Regulates the Structure and Function of Osteoprotegerin in Osteoclastogenesis. Journal of Biological Chemistry, 2016, 291, 24160-24171.	1.6	35
39	Influence of <scp>MC</scp> 3 <scp>T</scp> 3â€< scp>E1 preosteoblast culture on the corrosion of a <scp>T</scp> 6â€treated <scp>AZ</scp> 91 alloy. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 253-262.	1.6	17
40	Combination of Controlled Release Plateletâ€Rich Plasma Alginate Beads and Bone Morphogenetic Proteinâ€2 Genetically Modified Mesenchymal Stem Cells for Bone Regeneration. Journal of Periodontology, 2016, 87, 470-480.	1.7	29
41	Cilia Ift protein and motor -related bone diseases and mouse models. Frontiers in Bioscience - Landmark, 2015, 20, 515-555.	3.0	29
42	Role of Regulators of G Protein Signaling Proteins in Bone Physiology and Pathophysiology. Progress in Molecular Biology and Translational Science, 2015, 133, 47-75.	0.9	20
43	Hydrophilic polyurethane matrix promotes chondrogenesis of mesenchymal stem cells. Materials Science and Engineering C, 2015, 54, 182-195.	3.8	22
44	Function and regulation of primary cilia and intraflagellar transport proteins in the skeleton. Annals of the New York Academy of Sciences, 2015, 1335, 78-99.	1.8	86
45	Deletion of IFT80 Impairs Epiphyseal and Articular Cartilage Formation Due to Disruption of Chondrocyte Differentiation. PLoS ONE, 2015, 10, e0130618.	1.1	41
46	Role of regulator of G protein signaling proteins in bone. Frontiers in Bioscience - Landmark, 2014, 19, 634.	3.0	20
47	Deletion of IFT20 in early stage T lymphocyte differentiation inhibits the development of collagen-induced arthritis. Bone Research, 2014, 2, 14038.	5.4	20
48	Integration of a Novel Injectable Nano Calcium Sulfate/Alginate Scaffold and <i>BMP2</i> Gene-Modified Mesenchymal Stem Cells for Bone Regeneration. Tissue Engineering - Part A, 2013, 19, 508-518.	1.6	47
49	IFT80 is essential for chondrocyte differentiation by regulating Hedgehog and Wnt signaling pathways. Experimental Cell Research, 2013, 319, 623-632.	1.2	45
50	Mx1 re mediated <i>Rgs12</i> conditional knockout mice exhibit increased bone mass phenotype. Genesis, 2013, 51, 201-209.	0.8	22
51	BMP2 Genetically Engineered MSCs and EPCs Promote Vascularized Bone Regeneration in Rat Critical-Sized Calvarial Bone Defects. PLoS ONE, 2013, 8, e60473.	1.1	85
52	The intraflagellar transport protein IFT80 is required for cilia formation and osteogenesis. Bone, 2012, 51, 407-417.	1.4	47
53	RGS10-null mutation impairs osteoclast differentiation resulting from the loss of [Ca ²⁺] _i oscillation regulation. Genes and Development, 2007, 21, 1803-1816.	2.7	125
54	Specificity of RGS10A as a key component in the RANKL signaling mechanism for osteoclast differentiation. Journal of Cell Science, 2007, 120, 3362-3371.	1.2	40

Shuying Yang

#	Article	IF	CITATIONS
55	RGS12 Is Essential for RANKL-Evoked Signaling for Terminal Differentiation of Osteoclasts In Vitro. Journal of Bone and Mineral Research, 2006, 22, 45-54.	3.1	53
56	Multiple Signaling Pathways Converge on the Cbfa1/Runx2 Transcription Factor to Regulate Osteoblast Differentiation. Connective Tissue Research, 2003, 44, 109-116.	1.1	178
57	Multiple Signaling Pathways Converge on the Cbfa1/Runx2 Transcription Factor to Regulate Osteoblast Differentiation. Connective Tissue Research, 2003, 44, 109-116.	1.1	49