
Wengang Mao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5806075/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	A comparison of ship manoeuvrability models to approximate ship navigation trajectories. Ships and Offshore Structures, 2023, 18, 550-557.	1.9	6
2	Comparison of supervised machine learning methods to predict ship propulsion power at sea. Ocean Engineering, 2022, 245, 110387.	4.3	26
3	Ship Operational Environment. , 2022, , 1628-1639.		0
4	Analysis of roll damping model scale data. Ships and Offshore Structures, 2021, 16, 85-92.	1.9	2
5	A Practical Speed Loss Prediction Model at Arbitrary Wave Heading for Ship Voyage Optimization. Journal of Marine Science and Application, 2021, 20, 410-425.	1.7	10
6	Two-phase energy efficiency optimisation for ships using parallel hybrid electric propulsion system. Ocean Engineering, 2021, 238, 109733.	4.3	31
7	Voyage optimization combining genetic algorithm and dynamic programming for fuel/emissions reduction. Transportation Research, Part D: Transport and Environment, 2021, 90, 102670.	6.8	27
8	Impact of ship operations aided by voyage optimization on a ship's fatigue assessment. Journal of Marine Science and Technology, 2020, 26, 750.	2.9	3
9	An integrated risk assessment model for safe Arctic navigation. Transportation Research, Part A: Policy and Practice, 2020, 142, 101-114.	4.2	32
10	A semi-empirical model for ship speed loss prediction at head sea and its validation by full-scale measurements. Ocean Engineering, 2020, 209, 107494.	4.3	25
11	Effectiveness of 2D optimization algorithms considering voluntary speed reduction under uncertain metocean conditions. Ocean Engineering, 2020, 200, 107063.	4.3	14
12	Ship Operational Environment. , 2020, , 1-11.		0
13	Comparison of two statistical wave models for fatigue and fracture analysis of ship structures. Ocean Engineering, 2019, 187, 106161.	4.3	13
14	A Three-Dimensional Dijkstra's algorithm for multi-objective ship voyage optimization. Ocean Engineering, 2019, 186, 106131.	4.3	85
15	Voyage optimization for mitigating ship structural failure due to crack propagation. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2019, 233, 5-17.	0.7	1
16	Data-driven ship energy efficiency analysis and optimization model for route planning in ice-covered Arctic waters. Ocean Engineering, 2019, 186, 106071.	4.3	60
17	Spatio-temporal modelling of wind speed variations and extremes in the Caribbean and the Gulf of Mexico. Theoretical and Applied Climatology, 2019, 135, 921-944.	2.8	4
18	Analysis of uncertainties in the prediction of ships' fuel consumption – from early design to operation conditions. Ships and Offshore Structures, 2018, 13, 13-24.	1.9	42

Wengang Mao

#	Article	IF	CITATIONS
19	EONav - Copernicus Data in Support of Maritime Route Optimization. , 2018, , .		о
20	Stochastic spatio-temporal model for wind speed variation in the Arctic. Ocean Engineering, 2018, 165, 237-251.	4.3	4
21	Benchmark Study of Five Optimization Algorithms for Weather Routing. , 2017, , .		9
22	Estimation of Weibull distribution for wind speeds along ship routes. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 2017, 231, 464-480.	0.5	9
23	Ship heading control based on backstepping and Least squares support vector machine. , 2017, , .		3
24	Uncertainties of Crack Propagation Analysis in Ship Structures. , 2016, , .		0
25	Statistical models for the speed prediction of a container ship. Ocean Engineering, 2016, 126, 152-162.	4.3	49
26	Influence of Different Wave Load Sequence Models on Fatigue Life Prediction of Ship Structures Based on Fracture Mechanics Approach. , 2016, , .		1
27	A regression and beam theory based approach for fatigue assessment of containership structures including bending and torsion contributions. Marine Structures, 2015, 41, 244-266.	3.8	7
28	Development of a Spectral Method and a Statistical Wave Model for Crack Propagation Prediction in Ship Structures. Journal of Ship Research, 2014, 58, 106-116.	1.1	11
29	Uncertainty in Stress Concentration Factor Computation for Ship Fatigue Design. , 2014, , .		2
30	A comparative study of fatigue assessments of container ship structures using various direct calculation approaches. Ocean Engineering, 2014, 82, 65-74.	4.3	26
31	An Efficient Direct Calculation Approach for Fatigue Assessment of Container Ships Concerning Bending and Warping Stresses. , 2014, , .		Ο
32	Probabilistic Model for Wind Speed Variability Encountered by a Vessel. Natural Resources, 2014, 05, 837-855.	0.4	2
33	Notes on the Prediction of Extreme Ship Response. Journal of Offshore Mechanics and Arctic Engineering, 2013, 135, .	1.2	1
34	A Comparison of Two Wave Models and Their Influence on Fatigue Damage in Ship Structures. , 2013, , .		3
35	Theoretical development and validation of a fatigue model for ship routing. Ships and Offshore Structures, 2012, 7, 399-415.	1.9	8
36	Application of a ship-routing fatigue model to case studies of 2800 TEU and 4400 TEU container vessels. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 2012, 226, 222-234.	0.5	5

#	Article	IF	Citations
37	Estimation of Extreme Ship Response. Journal of Ship Research, 2012, 56, 23-34.	1.1	7
38	Fatigue Variation in Ships due to the Variability of Environmental Loads. , 2012, , .		1
39	A Comparison of Direct Calculation Approaches Applied on the Fatigue Strength Assessment of a Panamax Container Ship. , 2012, , .		0
40	Assessment of Full-Scale Measurements With Regard to Extreme Hogging and Sagging Condition of Container Ships. , 2011, , .		1
41	The Effect of Whipping/Springing on Fatigue Damage and Extreme Response of Ship Structures. , 2010, , .		3
42	Development of a Fatigue Model Useful in Ship Routing Design. Journal of Ship Research, 2010, 54, 281-293.	1.1	28
43	Fatigue Damage Assessment of Container Ships Concerning Wave-Induced Torsion. , 2010, , .		0
44	Estimation of Wave Loading Induced Fatigue Accumulation and Extreme Response of a Container Ship in Severe Seas. , 2010, , .		2
45	Comparison Between a Fatigue Model for Voyage Planning and Measurements of a Container Vessel. , 2009, , .		3