
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5805974/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Synthetic Studies toward 1,2,3,3a,4,8b-Hexahydropyrrolo[3,2- <i>b</i> ]indole Core. Unusual Fragmentation with 1,2-Aryl Shift. Journal of Organic Chemistry, 2022, 87, 1434-1444.                               | 3.2 | 5         |
| 2  | Electrophilically activated nitroalkanes in the synthesis of substituted 1,3,4-oxadiazoles from amino acid derivatives. Chemistry of Heterocyclic Compounds, 2022, 58, 32-36.                                   | 1.2 | 2         |
| 3  | 7-Aryl-3-(hydroxymethyl)-5-oxo-1,2,3,5-tetrahydro[1,2,4]triazolo[1,5-a]pyridine-6,8-dicarbonitriles:<br>Synthesis and Predicted Biological Activity. Russian Journal of General Chemistry, 2022, 92, 185-197.   | 0.8 | 5         |
| 4  | Improved Method for Preparation of 3-(1H-Indol-3-yl)benzofuran-2(3H)-ones. Molecules, 2022, 27, 1902.                                                                                                           | 3.8 | 1         |
| 5  | New Heterocyclisation Reactions of 5-Amino-3-(cyanomethyl)-1H-pyrazole-4-carbonitrile with Some<br>1,3-Dielectrophilic Agents. Russian Journal of General Chemistry, 2022, 92, 367-382.                         | 0.8 | 1         |
| 6  | Methylation of 2-Aryl-2-(3-indolyl)acetohydroxamic Acids and Evaluation of Cytotoxic Activity of the<br>Products. MolBank, 2022, 2022, M1307.                                                                   | 0.5 | 1         |
| 7  | Oxidative Cyclization of 4-(2-Aminophenyl)-4-oxo-2-phenylbutanenitriles into<br>2-(3-Oxoindolin-2-ylidene)acetonitriles. ACS Omega, 2022, 7, 14345-14356.                                                       | 3.5 | 1         |
| 8  | One-Pot Synthesis of (E)-2-(3-Oxoindolin-2-ylidene)-2-arylacetonitriles. Molecules, 2022, 27, 2808.                                                                                                             | 3.8 | 1         |
| 9  | Synthesis and Aminomethylation of<br>2-Amino-4-(2-chlorophenyl)-6-(dicyanomethyl)-1,4-dihydropyridine-3,5-dicarbonitrile<br>N-Methylmorpholinium Salt. Russian Journal of General Chemistry, 2022, 92, 779-790. | 0.8 | 4         |
| 10 | Preparation of spiro[indole-3,5â€2-isoxazoles] <i>via</i> Grignard conjugate addition/spirocyclization sequence. RSC Advances, 2021, 11, 1783-1793.                                                             | 3.6 | 5         |
| 11 | 1,6-Diamino-2-oxopyridine-3,5-dicarbonitrile Derivatives in the Mannich Reaction. Russian Journal of<br>General Chemistry, 2021, 91, 44-56.                                                                     | 0.8 | 6         |
| 12 | Synthesis and Analgesic Activity of New Heterocyclic Cyanothioacetamide Derivatives. Russian Journal of General Chemistry, 2021, 91, 154-166.                                                                   | 0.8 | 12        |
| 13 | Synthesis and Structure of<br>(2E)-3-Aryl(hetaryl)-2-[5-bromo-4-aryl(hetaryl)-1,3-thiazol-2-yl]acrylonitriles. Russian Journal of<br>General Chemistry, 2021, 91, 357-368.                                      | 0.8 | 4         |
| 14 | Synthesis and Luminescent Properties of Eu3+ and Tb3+ Complexes with Coumarin-3-carboxylic Acids.<br>Russian Journal of General Chemistry, 2021, 91, 685-692.                                                   | 0.8 | 3         |
| 15 | Synthesis and Regiospecific Bromination of (2E,4E)-5-Aryl-2-(4-arylthiazol-2-yl)penta-2,4-dienenitrile.<br>Russian Journal of General Chemistry, 2021, 91, 606-613.                                             | 0.8 | 3         |
| 16 | Pseudo-Five-Component Stereoselective Synthesis of Highly Functionalized<br>3-Azabicyclo[3.3.1]nona-2,7-dienes. Russian Journal of General Chemistry, 2021, 91, 758-767.                                        | 0.8 | 3         |
| 17 | Unusual Oxidative Dimerization in the 3-Aminothieno[2,3- <i>b</i> ]pyridine-2-carboxamide Series. ACS<br>Omega, 2021, 6, 14030-14048.                                                                           | 3.5 | 0         |
| 18 | New Methods of Synthesis, Structure and Aminomethylation of<br>4-Imino-2-(dicyanomethylene)-3-azaspiro[5.5]undecane-1,5-dicarbonitrile. Russian Journal of General<br>Chemistry, 2021, 91, 971-984.             | 0.8 | 5         |

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Reactions of Malononitrile Dimer with Isothiocyanates. Russian Journal of General Chemistry, 2021, 91, 951-965.                                                                                              | 0.8 | 4         |
| 20 | Synthesis and Luminescent Properties of Eu3+, Gd3+, and Tb3+ Complex Compounds with Some<br>N-Substituted Phthalamic Acids. Russian Journal of General Chemistry, 2021, 91, 1063-1069.                       | 0.8 | 2         |
| 21 | Unusual regioselective reaction of 2,6-dichloro-4-methylnicotinonitrile with malononitrile dimer.<br>Russian Chemical Bulletin, 2021, 70, 1363-1367.                                                         | 1.5 | 3         |
| 22 | Electrophilically Activated Nitroalkanes in Synthesis of 3,4-Dihydroquinozalines. Molecules, 2021, 26, 4274.                                                                                                 | 3.8 | 3         |
| 23 | Synthesis of New Polycyclic Compounds Containing Thieno[2′,3′:5,6]pyrimido[2,1-a]isoindole Fragment.<br>Russian Journal of General Chemistry, 2021, 91, 1292-1296.                                           | 0.8 | 0         |
| 24 | Synthesis and Aminomethylation of<br>6-Amino-2-(dicyanomethylene)-4-phenyl-1,2-dihydropyridine-3,5-dicarbonitrile Morpholinium Salt.<br>Russian Journal of General Chemistry, 2021, 91, 1471-1483.           | 0.8 | 3         |
| 25 | Synthetic studies towards benzofuro[2,3-b]quinoline and 6H-indolo[2,3-b]quinoline cores: Total synthesis of norneocryptolepine and neocryptolepine. Tetrahedron Letters, 2021, , 153395.                     | 1.4 | 3         |
| 26 | Electrophilically Activated Nitroalkanes in Double Annulation of [1,2,4]Triazolo[4,3-a]quinolines and 1,3,4-Oxadiazole Rings. Molecules, 2021, 26, 5692.                                                     | 3.8 | 2         |
| 27 | [3 + 2]-Annulation of pyridinium ylides with 1-chloro-2-nitrostyrenes unveils a tubulin polymerization inhibitor. Organic and Biomolecular Chemistry, 2021, 19, 7234-7245.                                   | 2.8 | 13        |
| 28 | Preparation of 3,5-diarylsubstituted 5-hydroxy-1,5-dihydro-2 <i>H</i> -pyrrol-2-ones <i>via</i> base-assisted cyclization of 3-cyanoketones. RSC Advances, 2021, 11, 16236-16245.                            | 3.6 | 5         |
| 29 | Direct Conversion of 3-(2-Nitroethyl)-1H-Indoles into 2-(1H-Indol-2-yl)Acetonitriles. Molecules, 2021, 26, 6132.                                                                                             | 3.8 | 4         |
| 30 | New 4-(2-Furyl)-1,4-dihydronicotinonitriles and 1,4,5,6-Tetrahydronicotinonitriles: Synthesis,<br>Structure, and Analgesic Activity. Russian Journal of General Chemistry, 2021, 91, 1646-1660.              | 0.8 | 8         |
| 31 | Synthesis and Some Properties of New 5-Hydroxy-2-[(hetarylthio)methyl]-4H-pyran-4-ones. Russian<br>Journal of General Chemistry, 2021, 91, 1629-1638.                                                        | 0.8 | 3         |
| 32 | 2-Amino-4,5-dihydrothiophene-3-carbonitriles: A New Synthesis, Quantum Chemical Studies, and<br>Mannich-Type Reactions Leading to New Hexahydrothieno[2,3-d]pyrimidines. ACS Omega, 2021, 6,<br>32571-32588. | 3.5 | 2         |
| 33 | Does electrophilic activation of nitroalkanes in polyphosphoric acid involve formation of nitrile oxides?. RSC Advances, 2021, 11, 35937-35945.                                                              | 3.6 | 4         |
| 34 | N,N′-Diphenyldithiomalonodiamide: Structural Features, Acidic Properties, and In Silico Estimation of<br>Biological Activity. Russian Journal of General Chemistry, 2021, 91, 2136-2150.                     | 0.8 | 8         |
| 35 | Methylene Components Exchange in the Reaction of Cyanoacetohydrazide with<br>2-Amino-4-arylbuta-1,3-diene-1,1,3-tricarbonitriles. Russian Journal of General Chemistry, 2021, 91,<br>2129-2135.              | 0.8 | 0         |
| 36 | Synthesis, Structure, and Analgesic Activity of<br>4-(5-Cyano-{4-(fur-2-yl)-1,4-dihydropyridin-3-yl}carboxamido)benzoic Acids Ethyl Esters. Russian Journal<br>of General Chemistry, 2021, 91, 2588-2605.    | 0.8 | 5         |

| #  | Article                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A new series of acetohydroxamates shows in vitro and in vivo anticancer activity against melanoma.<br>Investigational New Drugs, 2020, 38, 977-989.                                                                                                          | 2.6 | 11        |
| 38 | Preparation of 1,3,4-oxadiazoles and 1,3,4-thiadiazoles via chemoselective Ñ <b>y</b> clocondensation of<br>electrophilically activated nitroalkanes to (thio)semicarbazides or thiohydrazides. Chemistry of<br>Heterocyclic Compounds, 2020, 56, 1067-1072. | 1.2 | 8         |
| 39 | Novel synthetic approach to pyrrolo[1,2-b]cinnolines. Chemistry of Heterocyclic Compounds, 2020, 56, 1030-1041.                                                                                                                                              | 1.2 | 2         |
| 40 | Reaction of 3-Amino-4,6-diarylthieno[2,3-b]pyridine-2-carboxamides with Ninhydrin. Russian Journal of<br>General Chemistry, 2020, 90, 948-960.                                                                                                               | 0.8 | 7         |
| 41 | Nitroalkanes as electrophiles: synthesis of triazole-fused heterocycles with neuroblastoma differentiation activity. Organic and Biomolecular Chemistry, 2020, 18, 6651-6664.                                                                                | 2.8 | 14        |
| 42 | Synthesis of 2-(1 <i>H</i> -Indol-2-yl)acetamides via BrÃ,nsted Acid-Assisted Cyclization Cascade. Journal of Organic Chemistry, 2020, 85, 12128-12146.                                                                                                      | 3.2 | 9         |
| 43 | Synthesis and structure of new 2,4-dicyano-6-oxo-3-phenylbicyclo[3.2.1]octane-2,4-dicarboxylates.<br>Russian Chemical Bulletin, 2020, 69, 1938-1943.                                                                                                         | 1.5 | 3         |
| 44 | Unexpected cyclization of <i>ortho</i> -nitrochalcones into 2-alkylideneindolin-3-ones. RSC Advances, 2020, 10, 18440-18450.                                                                                                                                 | 3.6 | 11        |
| 45 | Synthesis of New Hyperbranched Dendrimers with Terminal Cationic Groups Based on Boltorn H20<br>Polyester Polyol. Russian Journal of General Chemistry, 2020, 90, 624-629.                                                                                   | 0.8 | 1         |
| 46 | Electrophilically Activated Nitroalkanes in Reactions With Carbon Based Nucleophiles. Frontiers in Chemistry, 2020, 8, 77.                                                                                                                                   | 3.6 | 17        |
| 47 | STRUCTURE AND PROPERTIES OF EUROPIUM(III) TRIAQUATRIGLYCINATE CHLORIDE. Journal of Structural Chemistry, 2020, 61, 1203-1210.                                                                                                                                | 1.0 | 1         |
| 48 | Michael addition to 3-(2-nitrovinyl)indoles – route toward aliphatic nitro compounds with heterocyclic substituents. Chemistry of Heterocyclic Compounds, 2019, 55, 541-546.                                                                                 | 1.2 | 5         |
| 49 | Synthesis of 4,6-Disubstituted 2-Thioxo-1,2-dihydropyridine-3-carbonitriles by the Reaction of<br>Acetylenic Ketones with Cyanothioacetamide. Russian Journal of General Chemistry, 2019, 89, 886-895.                                                       | 0.8 | 10        |
| 50 | Substituted N-(thieno[2,3-b]pyridine-3-yl)acetamides: synthesis, reactions, and biological activity.<br>Monatshefte FĂ¼r Chemie, 2019, 150, 1973-1985.                                                                                                       | 1.8 | 12        |
| 51 | Methods of synthesis of natural indoloquinolines isolated from Cryptolepis sanguinolenta.<br>Chemistry of Heterocyclic Compounds, 2019, 55, 905-932.                                                                                                         | 1.2 | 17        |
| 52 | Unexpected Result of Thiophosphorylation of 6-Aminopyrano[2,3-c]pyrazole-5-carbonitrile Derivative.<br>Russian Journal of General Chemistry, 2019, 89, 1752-1759.                                                                                            | 0.8 | 4         |
| 53 | Synthesis and Properties of New Fluorine-Containing Thieno[2,3-b]pyridine Derivatives. Russian<br>Journal of General Chemistry, 2019, 89, 1744-1751.                                                                                                         | 0.8 | 5         |
| 54 | Preparation of Stereodefined 2-(3-Oxoindolin-2-yl)-2-Arylacetonitriles via One-Pot Reaction of Indoles with Nitroalkenes. Journal of Organic Chemistry, 2019, 84, 12420-12429.                                                                               | 3.2 | 15        |

| #  | Article                                                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Synthesis and Properties of 4,6-Dimethyl-5-pentyl-2-thioxo-1,2-dihydropyridine-3-carbonitrile and<br>3-Amino-4,6-dimethyl-5-pentylthieno[2,3-b]pyridines. Russian Journal of General Chemistry, 2019, 89,<br>1575-1585.                                                                               | 0.8 | 12        |
| 56 | Synthesis of 3,4-dihydroisoquinolines using nitroalkanes in polyphosphoric acid. Russian Chemical<br>Bulletin, 2019, 68, 1047-1051.                                                                                                                                                                   | 1.5 | 4         |
| 57 | Novel convenient one-pot method for the synthesis of indoloquinolines. Russian Chemical Bulletin, 2019, 68, 836-840.                                                                                                                                                                                  | 1.5 | 4         |
| 58 | Synthesis of Spiro[indole-3,5′-isoxazoles] with Anticancer Activity via a Formal [4 + 1]-Spirocyclization of Nitroalkenes to Indoles. Journal of Organic Chemistry, 2019, 84, 7123-7137.                                                                                                              | 3.2 | 28        |
| 59 | Reaction of thieno[2,3-b]pyridines with sodium hypochlorite: An unusual and stereoselective one-pot<br>approach to dimeric pyrrolo[2′,3′:4,5]thieno[2,3-b]pyridines. Tetrahedron Letters, 2019, 60, 997-1000.                                                                                         | 1.4 | 6         |
| 60 | Reaction of 5-Amino-3-(cyanomethyl)-1H-pyrazole-4-carbonitrile with Hydroxycyclohexanones. Russian<br>Journal of General Chemistry, 2019, 89, 19-24.                                                                                                                                                  | 0.8 | 9         |
| 61 | Electrophilic activation of nitroalkanes in efficient synthesis of 1,3,4-oxadiazoles. RSC Advances, 2019, 9, 6636-6642.                                                                                                                                                                               | 3.6 | 24        |
| 62 | Synthesis and Luminescent Properties of Eu3+, Gd3+, and Tb3+ Complexes with Quinoline-4-carboxylic Acids. Russian Journal of General Chemistry, 2019, 89, 2413-2419.                                                                                                                                  | 0.8 | 3         |
| 63 | Synthesis of 11H-indolo[3,2-c]quinolines by SnCl4-catalyzed cyclization of indole-3-carbaldehyde oximes. Russian Chemical Bulletin, 2019, 68, 2262-2270.                                                                                                                                              | 1.5 | 0         |
| 64 | On the Structure of Zinc(II) Coordination Compounds with L-Histidine. Journal of Structural Chemistry, 2019, 60, 1757-1764.                                                                                                                                                                           | 1.0 | 0         |
| 65 | Electrophilically activated nitroalkanes in reaction with aliphatic diamines en route to imidazolines.<br>RSC Advances, 2019, 9, 39458-39465.                                                                                                                                                         | 3.6 | 9         |
| 66 | New photochromic indoline spiropyrans containing cationic substituent in the 2H-chromene moiety.<br>Journal of Molecular Structure, 2019, 1178, 590-598.                                                                                                                                              | 3.6 | 16        |
| 67 | Desymmetrization of Cyclopropenes via the Potassium-Templated Diastereoselective<br>7- <i>exo</i> - <i>trig</i> Cycloaddition of Tethered Amino Alcohols toward Enantiopure<br>Cyclopropane-Fused Oxazepanones with Antimycobacterial Activity. Journal of Organic Chemistry,<br>2018, 83, 5650-5664. | 3.2 | 8         |
| 68 | Intramolecular nucleophilic addition of carbanions generated from <i>N</i> -benzylamides to cyclopropenes. Organic and Biomolecular Chemistry, 2018, 16, 285-294.                                                                                                                                     | 2.8 | 7         |
| 69 | Aminomethylation of 2,4-Dioxo-3-azaspiro[5.5]undecane- 1,5-dicarbonitrile. Efficient Synthesis of New<br>3,7-Diazaspiro- [bicyclo[3.3.1]nonane-9,1′-cyclohexane] Derivatives. Russian Journal of Organic<br>Chemistry, 2018, 54, 1803-1806.                                                           | 0.8 | 1         |
| 70 | Nitrostyrenes as 1,4- <i>CCNO</i> -dipoles: diastereoselective formal [4+1] cycloaddition of indoles.<br>Chemical Communications, 2018, 54, 13260-13263.                                                                                                                                              | 4.1 | 12        |
| 71 | A nitroalkane-based approach to one-pot three-component synthesis of isocryptolepine and its analogs with potent anti-cancer activities. RSC Advances, 2018, 8, 36980-36986.                                                                                                                          | 3.6 | 15        |
| 72 | Synthesis, structure, and biological activity of 2,6-diazido-4-methylnicotinonitrile derivatives.<br>Chemistry of Heterocyclic Compounds, 2018, 54, 964-970.                                                                                                                                          | 1.2 | 5         |

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Some New Reactions and Properties of Xanthane Hydride (5-Amino-1,2,4-dithiazole-3-thione). Russian<br>Journal of General Chemistry, 2018, 88, 2050-2057.                                                   | 0.8 | 4         |
| 74 | A New Synthetic Approach to Functionalized Bicyclo[3.2.1]octanes. Russian Journal of General Chemistry, 2018, 88, 1533-1536.                                                                               | 0.8 | 6         |
| 75 | Unexpected cyclization of 2-(2-aminophenyl)indoles with nitroalkenes to furnish indolo[3,2-c]quinolines. Organic and Biomolecular Chemistry, 2018, 16, 4325-4332.                                          | 2.8 | 17        |
| 76 | Modern Trends of Organic Chemistry in Russian Universities. Russian Journal of Organic Chemistry,<br>2018, 54, 157-371.                                                                                    | 0.8 | 68        |
| 77 | One-Pot, Three-Component Assembly of Indoloquinolines: Total Synthesis of Isocryptolepine. Journal of Organic Chemistry, 2017, 82, 3011-3018.                                                              | 3.2 | 31        |
| 78 | Dual role of polyphosphoric acid-activated nitroalkanes in oxidative peri-annulations: efficient synthesis of 1,3,6,8-tetraazapyrenes. RSC Advances, 2017, 7, 29927-29932.                                 | 3.6 | 19        |
| 79 | Synthesis of new functionalized 3,7-diazabicyclo[3.3.1]nonanes by aminomethylation of the Guareschi<br>imides. Tetrahedron Letters, 2017, 58, 4663-4666.                                                   | 1.4 | 6         |
| 80 | Aminomethylation of Guareschi imides: synthesis of<br>2,4-dioxo-1H,5H-3,7-spiro[diazabicyclo[3.3.1]nonane-9,4'-piperidine]-1,5-dicarbonitriles. Chemistry of<br>Heterocyclic Compounds, 2017, 53, 887-891. | 1.2 | 3         |
| 81 | Reaction of tetra(phenylethynyl)tin with aromatic aldehydes: A new one-pot method for the synthesis<br>of α-acetylene ketones. Russian Journal of General Chemistry, 2017, 87, 1627-1630.                  | 0.8 | 10        |
| 82 | Electrophilically activated nitroalkanes in the synthesis of 6,7-dihydro-1H-cyclopenta[g]perimidines.<br>Russian Journal of Organic Chemistry, 2017, 53, 1081-1084.                                        | 0.8 | 7         |
| 83 | Directed nucleophilic addition of phenoxides to cyclopropenes. Organic and Biomolecular Chemistry, 2017, 15, 8153-8165.                                                                                    | 2.8 | 4         |
| 84 | Oxidative coupling of tetraalkynyltin with aldehydes leading to alkynyl ketones. New Journal of<br>Chemistry, 2017, 41, 8297-8304.                                                                         | 2.8 | 17        |
| 85 | Organic chemistry. History and mutual relations of universities of Russia. Russian Journal of Organic<br>Chemistry, 2017, 53, 1275-1437.                                                                   | 0.8 | 48        |
| 86 | An efficient synthesis of (3-indolyl)acetonitriles by reduction of hydroxamic acids. Chemistry of<br>Heterocyclic Compounds, 2016, 52, 299-302.                                                            | 1.2 | 5         |
| 87 | Michael addition to unprotected 3-(2-nitrovinyl)indoles under the conditions of microwave synthesis.<br>Chemistry of Heterocyclic Compounds, 2016, 52, 923-927.                                            | 1.2 | 4         |
| 88 | Synthesis of O,O-Dialkyl S-(1,1-dimethyl-2-oxoethyl) dithiophosphates and their reactions with<br>N-nucleophiles. Doklady Chemistry, 2016, 467, 131-135.                                                   | 0.9 | 0         |
| 89 | Direct reductive coupling of indoles to nitrostyrenes en route to (indol-3-yl)acetamides. RSC<br>Advances, 2016, 6, 93881-93886.                                                                           | 3.6 | 7         |
| 90 | Rational design of an efficient one-pot synthesis of 6H-pyrrolo[2,3,4-gh]perimidines in polyphosphoric<br>acid. RSC Advances, 2016, 6, 82425-82431.                                                        | 3.6 | 18        |

NICOLAI A AKSENOV

| #   | Article                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Introduction of tetrazol-1-yl and 5-methyltetrazol-1-yl substituents in the phenyl ring of dibenzo-18-crown-6. Chemistry of Heterocyclic Compounds, 2016, 52, 849-851.  | 1.2 | 4         |
| 92  | Microwave synthesis of 2-[(E)-2-(1H-indol-3-yl)vinyl]hetarenes. Chemistry of Heterocyclic Compounds, 2015, 51, 865-868.                                                 | 1.2 | 5         |
| 93  | Activity of 2-Aryl-2-(3-indolyl)acetohydroxamates against Drug-Resistant Cancer Cells. Journal of<br>Medicinal Chemistry, 2015, 58, 2206-2220.                          | 6.4 | 46        |
| 94  | Benzimidazoles and benzoxazoles via the nucleophilic addition of anilines to nitroalkanes. Organic and Biomolecular Chemistry, 2015, 13, 4289-4295.                     | 2.8 | 48        |
| 95  | Direct metal-free synthesis of diarylamines from 2-nitropropane via the twofold C–H<br>functionalization of arenes. RSC Advances, 2015, 5, 84849-84855.                 | 3.6 | 20        |
| 96  | One-pot synthesis of benzoxazoles via the metal-free ortho-C–H functionalization of phenols with nitroalkanes. RSC Advances, 2015, 5, 71620-71626.                      | 3.6 | 39        |
| 97  | Nitroalkenes as surrogates for cyanomethylium species in a one-pot synthesis of non-symmetric diarylacetonitriles. RSC Advances, 2015, 5, 106492-106497.                | 3.6 | 13        |
| 98  | Metal-free ring expansion of indoles with nitroalkenes: a simple, modular approach to 3-substituted 2-quinolones. RSC Advances, 2015, 5, 8647-8656.                     | 3.6 | 30        |
| 99  | New one-pot reaction of perimidines with nitroethane and acylating agents in polyphosphoric acid.<br>Russian Chemical Bulletin, 2014, 63, 1643-1645.                    | 1.5 | 1         |
| 100 | Highly efficient modular metal-free synthesis of 3-substituted 2-quinolones. Organic and<br>Biomolecular Chemistry, 2014, 12, 9786-9788.                                | 2.8 | 24        |
| 101 | Arenes and Hetarenes in Reactions with unsaturated Nitro Compounds (Review). Chemistry of<br>Heterocyclic Compounds, 2014, 50, 594-618.                                 | 1.2 | 8         |
| 102 | Novel method for the synthesis of isatins using ethyl nitroacetate in polyphosphoric acid. Chemistry of Heterocyclic Compounds, 2013, 49, 645-647.                      | 1.2 | 4         |
| 103 | A novel method for the synthesis of 2-aryl-3,4-dihydroimidazo[4,5-b]indoles. Chemistry of Heterocyclic<br>Compounds, 2013, 49, 651-652.                                 | 1.2 | 3         |
| 104 | New method of synthesis of 2-arylindoles and naphtho[1,2-d]imidazoles. Russian Journal of Organic Chemistry, 2013, 49, 1244-1245.                                       | 0.8 | 5         |
| 105 | Synthesis of 6H-Pyrrolo[2,3,4-gh]perimidines from naphthalene-1,4,8-triamine. Russian Journal of<br>Organic Chemistry, 2013, 49, 1555-1556.                             | 0.8 | 3         |
| 106 | New one pot synthesis of 1H-1,5,7-triazacyclopenta[c,d]phenalenes. Russian Chemical Bulletin, 2013, 62,<br>855-856.                                                     | 1.5 | 3         |
| 107 | A new one pot reaction of perimidines with nitroethane and sodium nitrite in polyphosphoric acid.<br>Russian Chemical Bulletin, 2013, 62, 1127-1128.                    | 1.5 | 4         |
| 108 | Metal-free transannulation reaction of indoles with nitrostyrenes: a simple practical synthesis of 3-substituted 2-quinolones. Chemical Communications, 2013, 49, 9305. | 4.1 | 43        |

| #   | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | 6(7)-Acylperimidines nitration and methods of peri-annelation on this base. Chemistry of Heterocyclic<br>Compounds, 2013, 49, 980-987.                                                                                                                | 1.2 | 4         |
| 110 | Novel three-component reaction of perimidines with 1,3,5-triazines and carbonyl compounds in polyphosphoric acid. an efficient method for peri-annelation of a carbocyclic and pyridine ring. Chemistry of Heterocyclic Compounds, 2012, 48, 634-641. | 1.2 | 6         |
| 111 | New three-component reaction of perimidines with sodium azide and sodium nitrite in polyphosphoric acid. Chemistry of Heterocyclic Compounds, 2012, 48, 677-679.                                                                                      | 1.2 | 2         |
| 112 | Unusual dimerization reaction of 1H-perimidines in the presence of aluminum chloride in nitromethane. Chemistry of Heterocyclic Compounds, 2012, 48, 1122-1124.                                                                                       | 1.2 | 1         |
| 113 | A novel method for the synthesis of 1,8-dihydropyrido[2,3,4-gh]perimidin-7(6H)-ones. Chemistry of<br>Heterocyclic Compounds, 2012, 48, 1269-1271.                                                                                                     | 1.2 | 3         |
| 114 | Synthesis of novel 1,2,3,6-tetraazapyrene heterocyclic system representatives –<br>3,8-dihydropyrido[2',3',4':4,5]naphtho-[1,8-de][1,2,3]triazin-7(6H)-ones. Chemistry of Heterocyclic<br>Compounds, 2012, 48, 1272-1274.                             | 1.2 | 3         |
| 115 | Nitromethane in Polyphosphoric Acid—A New Reagent for Carboxyamidation and Carboxylation of<br>Activated Aromatic Compounds. Synthetic Communications, 2012, 42, 541-547.                                                                             | 2.1 | 18        |
| 116 | Methods of peri-annulation of five- and six-membered carbocyclic and nitrogen containing heterocyclic fragments. Review Journal of Chemistry, 2012, 2, 208-239.                                                                                       | 1.0 | 9         |
| 117 | Methods for the amination of arenes. Review Journal of Chemistry, 2011, 1, 359-384.                                                                                                                                                                   | 1.0 | 3         |
| 118 | Novel method for the acetamination of crown ethers. Chemistry of Heterocyclic Compounds, 2011, 46, 1405-1406.                                                                                                                                         | 1.2 | 8         |
| 119 | Novel method for the peri-annelation of pyrrole ring to perimidines. Chemistry of Heterocyclic Compounds, 2011, 46, 1547-1548.                                                                                                                        | 1.2 | 4         |
| 120 | Three-component reaction of perimidines with acetophenone and sodium nitrite in polyphosphoric acid. Chemistry of Heterocyclic Compounds, 2011, 47, 1185-1187.                                                                                        | 1.2 | 4         |
| 121 | New method for the acetamination of perimidines. Chemistry of Heterocyclic Compounds, 2010, 46, 1025-1026.                                                                                                                                            | 1.2 | 9         |
| 122 | Nitroethane in Polyphosphoric Acid: A New Reagent for Acetamidation and Amination of Aromatic<br>Compounds. Synlett, 2010, 2010, 2628-2630.                                                                                                           | 1.8 | 41        |
| 123 | Regioselectivity Change in the Reaction of Naphthalene and 2-Naphthyl Ethers with 1,3,5-Triazines<br>Depending on Reagent Quantities. Synthesis, 2009, 2009, 3439-3442.                                                                               | 2.3 | 11        |
| 124 | An original approach to the synthesis of the benzo[g]indazole heterocyclic system. Chemistry of<br>Heterocyclic Compounds, 2009, 45, 117-118.                                                                                                         | 1.2 | 3         |
| 125 | Synthesis of bipyridyls by the reaction of allylpyridines with 1,3,5-triazine in polyphosphoric acid.<br>Russian Chemical Bulletin, 2009, 58, 254-255.                                                                                                | 1.5 | 1         |
| 126 | Synthesis of 3-hetarylquinolines in the system 1,3,5-triazine-polyphosphoric acid. Russian Journal of Organic Chemistry, 2009, 45, 1416-1417.                                                                                                         | 0.8 | 2         |

| #   | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Unexpected result in the reaction of 1,8-naphthalenediamine with triazine and carbonyl compounds in polyphosphoric acid. Chemistry of Heterocyclic Compounds, 2008, 44, 1291-1292.                                                                          | 1.2 | 4         |
| 128 | Synthesis of 1,3-diazapyrenes and 1,3,7-triazapyrenes by the reaction of 1,8-naphthalenediamine with<br>triazine in the presence of carbonyl compounds or benzonitrile in polyphosphoric acid. Chemistry of<br>Heterocyclic Compounds, 2008, 44, 1379-1383. | 1.2 | 5         |
| 129 | <strong>Synthesis of<br/>2,8-diamino-5-hydroxy-4<em>H</em>,10<em>H</em>-pyrano[2,3-<em>f</em>]chromene-3,9-dicarbonitrile<br/></strong> . , 0, , .                                                                                                          |     | ο         |