Qing-long Fu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5805859/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Formula Assignment Algorithm for Deuterium-Labeled Ultrahigh-Resolution Mass Spectrometry: Implications of the Formation Mechanism of Halogenated Disinfection Byproducts. Analytical Chemistry, 2022, 94, 1717-1725.	3.2	25
2	Formation pathway of disinfection by-products of lignin monomers in raw water during disinfection. Science of the Total Environment, 2022, 825, 153706.	3.9	2
3	Mechanistic Study of the Effects of Agricultural Amendments on Photochemical Processes in Paddy Water during Rice Growth. Environmental Science & Technology, 2022, 56, 4221-4230.	4.6	17
4	Molecular level insights into HO• and Cl2•â~'-Mediated transformation of dissolved organic matter in landfill leachate concentrates during the Fenton process. Chemical Engineering Journal, 2022, 446, 137062.	6.6	13
5	Deciphering dissolved organic matter by Fourier transform ion cyclotron resonance mass spectrometryÂ(FT-ICR MS): from bulk to fractions and individuals. , 2022, 1, .		49
6	Molecular transformation of dissolved organic matter and the formation of disinfection byproducts in full-scale surface water treatment processes. Science of the Total Environment, 2022, 838, 156547.	3.9	11
7	Mechanistic insights into the generation and control of Cl-DBPs during wastewater sludge chlorination disinfection process. Environment International, 2022, 167, 107389.	4.8	6
8	The molecular characteristics of DOMs derived from bio-stabilized wastewater activated sludge and its effect on alleviating Cd-stress in rice seedlings (Oryza sativa L.). Science of the Total Environment, 2022, 845, 157157.	3.9	9
9	Heating temperature dependence of molecular characteristics and biological response for biomass pyrolysis volatile-derived water-dissolved organic matter. Science of the Total Environment, 2021, 757, 143749.	3.9	8
10	Exploring the fluorescence quenching interaction of amino acids and protein with natural organic matter by a multi-spectroscopic method. Water Science and Technology: Water Supply, 2021, 21, 3402-3415.	1.0	3
11	Sizeâ€dependent Molecular Characteristics and Possible Sources of Organic Aerosols at a Coastal New Particle Formation Hotspot of East China. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034610.	1.2	0
12	Photochemical characterization of paddy water during rice cultivation: Formation of reactive intermediates for As(III) oxidation. Water Research, 2021, 206, 117721.	5.3	33
13	Effects of extracellular polymeric substances on silver nanoparticle bioaccumulation and toxicity to Triticum aestivum L Chemosphere, 2021, 280, 130863.	4.2	13
14	Active Iron Phases Regulate the Abiotic Transformation of Organic Carbon during Redox Fluctuation Cycles of Paddy Soil. Environmental Science & Technology, 2021, 55, 14281-14293.	4.6	48
15	Contrasting impacts of pH on the abiotic transformation of hydrochar-derived dissolved organic matter mediated by δ-MnO2. Geoderma, 2020, 378, 114627.	2.3	23
16	Development and Application of a High-Precision Algorithm for Nontarget Identification of Organohalogens Based on Ultrahigh-Resolution Mass Spectrometry. Analytical Chemistry, 2020, 92, 13989-13996.	3.2	45
17	Development and comparison of formula assignment algorithms for ultrahigh-resolution mass spectra of natural organic matter. Analytica Chimica Acta, 2020, 1125, 247-257.	2.6	99
18	Physiological responses of the freshwater N 2 â€fixing cyanobacterium Raphidiopsis raciborskii to Fe and N availabilities. Environmental Microbiology, 2019, 21, 1211-1223.	1.8	7

QING-LONG FU

#	Article	IF	CITATIONS
19	lron uptake by bloom-forming freshwater cyanobacterium Microcystis aeruginosa in natural and effluent waters. Environmental Pollution, 2019, 247, 392-400.	3.7	14
20	Effects of molecular weight-fractionated natural organic matter on the phytoavailability of silver nanoparticles. Environmental Science: Nano, 2018, 5, 969-979.	2.2	24
21	Identifying Plant Stress Responses to Roxarsone in Soybean Root Exudates: New Insights from Two-Dimensional Correlation Spectroscopy. Journal of Agricultural and Food Chemistry, 2018, 66, 53-62.	2.4	14
22	Temporal variability in Cu speciation, phytotoxicity, and soil microbial activity of Cu-polluted soils as affected by elevated temperature. Chemosphere, 2018, 194, 285-296.	4.2	14
23	Natural degradation of roxarsone in contrasting soils: Degradation kinetics and transformation products. Science of the Total Environment, 2017, 607-608, 132-140.	3.9	24
24	Inhibited transport of graphene oxide nanoparticles in granular quartz sand coated with Bacillus subtilis and Pseudomonas putida biofilms. Chemosphere, 2017, 169, 1-8.	4.2	30
25	Extraction and speciation analysis of roxarsone and its metabolites from soils with different physicochemical properties. Journal of Soils and Sediments, 2016, 16, 1557-1568.	1.5	26
26	Roxarsone binding to soil-derived dissolved organic matter: Insights from multi-spectroscopic techniques. Chemosphere, 2016, 155, 225-233.	4.2	83
27	Phytotoxicity and uptake of roxarsone by wheat (Triticum aestivum L.) seedlings. Environmental Pollution, 2016, 219, 210-218.	3.7	12
28	Sorption of roxarsone onto soils with different physicochemical properties. Chemosphere, 2016, 159, 103-112.	4.2	25
29	Aromatic Arsenical Additives (AAAs) in the Soil Environment: Detection, Environmental Behaviors, Toxicities, and Remediation. Advances in Agronomy, 2016, , 1-41.	2.4	8
30	Bio-grout based on microbially induced sand solidification by means of asparaginase activity. Scientific Reports, 2015, 5, 16128.	1.6	55
31	Concentrations of Heavy Metals and Arsenic in Market Rice Grain and Their Potential Health Risks to the Population of Fuzhou, China. Human and Ecological Risk Assessment (HERA), 2015, 21, 117-128.	1.7	40
32	Calcifying cyanobacterium (Nostoc calcicola) reactor as a promising way to remove cadmium from water. Ecological Engineering, 2015, 81, 107-114.	1.6	13
33	A comparison of the potential health risk of aluminum and heavy metals in tea leaves and tea infusion of commercially available green tea in Jiangxi, China. Environmental Monitoring and Assessment, 2015, 187, 228.	1.3	70
34	Health Risk Assessment of Al and Heavy Metals in Milk Products for Different Age Groups in China. Polish Journal of Environmental Studies, 2015, 24, 2707-2714.	0.6	13
35	A survey on the heavy metal contents in Chinese traditional egg products and their potential health risk assessment. Food Additives and Contaminants: Part B Surveillance, 2014, 7, 99-105.	1.3	31
36	Recent protests against paraxylene in Kunming: Re-alarming situation for Chinese government. Ecological Engineering, 2013, 60, 140-141.	1.6	3

QING-LONG FU

#	Article	IF	CITATIONS
37	Effects of heat treatment on fluorescence properties of humic substances from sandy soil in arid land and their Hg(II) binding behaviors. Environmental Earth Sciences, 2012, 66, 2273-2279.	1.3	9
38	Biomineralization based remediation of As(III) contaminated soil by Sporosarcina ginsengisoli. Journal of Hazardous Materials, 2012, 201-202, 178-184.	6.5	282
39	Bioremediation of Pb-Contaminated Soil Based on Microbially Induced Calcite Precipitation. Journal of Microbiology and Biotechnology, 2012, 22, 244-247.	0.9	124
40	Complexation between Hg(II) and biofilm extracellular polymeric substances: An application of fluorescence spectroscopy. Journal of Hazardous Materials, 2010, 175, 359-365.	6.5	154