Sumiko Kiryu-Seo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/580568/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neprilysin Degrades Both Amyloid β Peptides 1–40 and 1–42 Most Rapidly and Efficiently among Thiorphan- and Phosphoramidon-sensitive Endopeptidases. Journal of Biological Chemistry, 2001, 276, 21895-21901.	1.6	282
2	Expression of the Activating Transcription Factor 3 Prevents c-Jun N-Terminal Kinase-Induced Neuronal Death by Promoting Heat Shock Protein 27 Expression and Akt Activation. Journal of Neuroscience, 2003, 23, 5187-5196.	1.7	241
3	Myelination and Axonal Electrical Activity Modulate the Distribution and Motility of Mitochondria at CNS Nodes of Ranvier. Journal of Neuroscience, 2011, 31, 7249-7258.	1.7	158
4	Demyelination Increases Axonal Stationary Mitochondrial Size and the Speed of Axonal Mitochondrial Transport. Journal of Neuroscience, 2010, 30, 6658-6666.	1.7	151
5	Damage-induced neuronal endopeptidase (DINE) is a unique metallopeptidase expressed in response to neuronal damage and activates superoxide scavengers. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 4345-4350.	3.3	114
6	Cleavage of Neuregulin-1 by BACE1 or ADAM10 Protein Produces Differential Effects on Myelination. Journal of Biological Chemistry, 2011, 286, 23967-23974.	1.6	101
7	Nerve injury enhances rat neuronal glutamate transporter expression: identification by differential display PCR. Journal of Neuroscience, 1995, 15, 7872-7878.	1.7	96
8	C-Protein-Coupled Receptor Screen Reveals a Role for Chemokine Receptor CCR5 in Suppressing Microglial Neurotoxicity. Journal of Neuroscience, 2008, 28, 11980-11988.	1.7	87
9	Collapsin response mediator protein-2 accelerates axon regeneration of nerve-injured motor neurons of rat. Journal of Neurochemistry, 2003, 86, 1042-1050.	2.1	76
10	Critical Role for DP5/Harakiri, a Bcl-2 Homology Domain 3-Only Bcl-2 Family Member, in Axotomy-Induced Neuronal Cell Death. Journal of Neuroscience, 2004, 24, 3721-3725.	1.7	76
11	Noxa Is a Critical Mediator of p53-Dependent Motor Neuron Death after Nerve Injury in Adult Mouse. Journal of Neuroscience, 2005, 25, 1442-1447.	1.7	74
12	Neuronal Injury-inducible Gene Is Synergistically Regulated by ATF3, c-Jun, and STAT3 through the Interaction with Sp1 in Damaged Neurons. Journal of Biological Chemistry, 2008, 283, 6988-6996.	1.6	74
13	Endothelin-converting enzymes and endothelin receptor B messenger RNAs are expressed in different neural cell species and these messenger RNAs are coordinately induced in neurons and astrocytes respectively following nerve injury. Neuroscience, 2000, 101, 441-449.	1.1	70
14	Selective Upregulation of Cytokine Receptor Subchain and Their Intracellular Signalling Molecules After Peripheral Nerve Injury. European Journal of Neuroscience, 1997, 9, 1047-1054.	1.2	49
15	p53-Independent Cyclin G Expression in a Group of Mature Neurons and Its Enhanced Expression during Nerve Regeneration. Journal of Neuroscience, 1996, 16, 5961-5966.	1.7	46
16	Unique anti-apoptotic activity of EAAC1 in injured motor neurons. EMBO Journal, 2006, 25, 3411-3421.	3.5	46
17	Enhanced expression of 14-3-3 family members in injured motoneurons. Molecular Brain Research, 1998, 55, 315-320.	2.5	43
18	Mitochondrial fission is an acute and adaptive response in injured motor neurons. Scientific Reports, 2016, 6, 28331.	1.6	43

SUMIKO KIRYU-SEO

#	Article	IF	CITATIONS
19	Regulation of mRNA expression involved in Ras and PKA signal pathways during rat hypoglossal nerve regeneration. Molecular Brain Research, 1995, 29, 147-156.	2.5	40
20	Induced expressions of Rab24 GTPase and LC3 in nerve-injured motor neurons. Biochemical and Biophysical Research Communications, 2005, 337, 1206-1213.	1.0	39
21	Damage-Induced Neuronal Endopeptidase Is Critical for Presynaptic Formation of Neuromuscular Junctions. Journal of Neuroscience, 2010, 30, 6954-6962.	1.7	39
22	The nuclear events guiding successful nerve regeneration. Frontiers in Molecular Neuroscience, 2011, 4, 53.	1.4	38
23	Mitochondrial behavior during axon regeneration/degeneration in vivo. Neuroscience Research, 2019, 139, 42-47.	1.0	36
24	Transgenic mouse overexpressing the Akt reduced the volume of infarct area after middle cerebral artery occlusion. Neuroscience Letters, 2004, 359, 159-162.	1.0	35
25	Expressed-sequence-tag approach to identify differentially expressed genes following peripheral nerve axotomy. Molecular Brain Research, 1999, 64, 34-40.	2.5	34
26	Identification of an Axotomy-Induced Glycosylated Protein, AIGP1, Possibly Involved in Cell Death Triggered by Endoplasmic Reticulum–Golgi Stress. Journal of Neuroscience, 2002, 22, 10751-10760.	1.7	34
27	A disintegrin and metalloprotease with thrombospondin type1 motifs (ADAMTS-1) and IL-1 receptor type 1 mRNAs are simultaneously induced in nerve injured motor neurons. Molecular Brain Research, 2001, 89, 158-163.	2.5	33
28	Damage-Induced Neuronal Endopeptidase (DINE/ECEL) Expression Is Regulated by Leukemia Inhibitory Factor and Deprivation of Nerve Growth Factor in Rat Sensory Ganglia after Nerve Injury. Journal of Neuroscience, 2002, 22, 9410-9418.	1.7	32
29	Altered expression of neprilysin family members in the pituitary gland of sleep-disturbed rats, an animal model of severe fatigue. Journal of Neurochemistry, 2005, 95, 1156-1166.	2.1	32
30	Chronic stress elicits prolonged activation of αâ€MSH secretion and subsequent degeneration of melanotroph. Journal of Neurochemistry, 2009, 109, 1389-1399.	2.1	32
31	microRNA-124 is down regulated in nerve-injured motor neurons and it potentially targets mRNAs for KLF6 and STAT3. Neuroscience, 2014, 256, 426-432.	1.1	32
32	Up-regulation of ERK (MAP kinase) and MEK (MAP kinase kinase) transcription after rat facial nerve transection. Neuroscience Research, 1994, 20, 275-280.	1.0	31
33	Up-regulation of thioredoxin expression in motor neurons after nerve injury. Molecular Brain Research, 1998, 62, 86-91.	2.5	30
34	Dimethylarginine dimethylaminohydrolase (DDAH) as a nerve-injury-associated molecule: mRNA localization in the rat brain and its coincident up-regulation with neuronal NO synthase (nNOS) in axotomized motoneurons. European Journal of Neuroscience, 1999, 11, 2160-2166.	1.2	29
35	Vesicular acetylcholine transporter can be a morphological marker for the reinnervation to muscle of regenerating motor axons. Neuroscience Research, 2004, 48, 305-314.	1.0	29
36	Enhancement of Extracellular Glutamate Scavenge System in Injured Motoneurons. Journal of Neurochemistry, 2002, 71, 913-919.	2.1	28

SUMIKO KIRYU-SEO

#	Article	IF	CITATIONS
37	Alternative expression of Shc family members in nerve-injured motoneurons. Molecular Brain Research, 1998, 53, 291-296.	2.5	26
38	Expression of damage-induced neuronal endopeptidase (DINE) mRNA in peri-infarct cortical and thalamic neurons following middle cerebral artery occlusion. Journal of Neurochemistry, 2004, 91, 956-964.	2.1	26
39	Damage-induced neuronal endopeptidase (DINE) enhances axonal regeneration potential of retinal ganglion cells after optic nerve injury. Cell Death and Disease, 2017, 8, e2847-e2847.	2.7	25
40	Expression analysis of the regenerating gene (Reg) family members Regâ€IIIβ and Regâ€IIIγ in the mouse during development. Journal of Comparative Neurology, 2012, 520, 479-494.	0.9	23
41	Cavernous nerve injury elicits GAP-43 mRNA expression but not regeneration of injured pelvic ganglion neurons. Brain Research, 2003, 986, 166-173.	1.1	21
42	ECEL1 mutation implicates impaired axonal arborization of motor nerves in the pathogenesis of distal arthrogryposis. Acta Neuropathologica, 2016, 132, 111-126.	3.9	20
43	Localization and ontogeny of damage-induced neuronal endopeptidase mRNA-expressing neurons in the rat nervous system. Neuroscience, 2006, 141, 299-310.	1.1	19
44	Altered expression of Smad family members in injured motor neurons of rat. Brain Research, 2007, 1132, 36-41.	1.1	19
45	A sequence-specific splicing activator, Tra2β, is up-regulated in response to nerve injury. Molecular Brain Research, 1998, 62, 220-223.	2.5	17
46	Up-regulation of ferritin heavy chain mRNA expression in the rat skeletal muscle after denervation: detected by means of differential display. Neuroscience Research, 1995, 23, 353-360.	1.0	15
47	Threeâ€dimensional analysis of somatic mitochondrial dynamics in fissionâ€deficient injured motor neurons using FIB/SEM. Journal of Comparative Neurology, 2017, 525, 2535-2548.	0.9	15
48	Discordant expression of c-Ret and glial cell line-derived neurotrophic factor receptor alpha-1 mRNAs in response to motor nerve injury in neonate rats. Molecular Brain Research, 1999, 70, 298-303.	2.5	14
49	New Insights of a Neuronal Peptidase DINE/ECEL1: Nerve Development, Nerve Regeneration and Neurogenic Pathogenesis. Neurochemical Research, 2019, 44, 1279-1288.	1.6	14
50	The p53-independent nuclear translocation of Cyclin G1 in degenerating neurons by ischemic and traumatic insults. Experimental Neurology, 2005, 193, 350-360.	2.0	13
51	Motor Nerve Arborization Requires Proteolytic Domain of Damage-Induced Neuronal Endopeptidase (DINE) during Development. Journal of Neuroscience, 2016, 36, 4744-4757.	1.7	13
52	Axonal injury alters the extracellular glial environment of the axon initial segment and allows substantial mitochondrial influx into axon initial segment. Journal of Comparative Neurology, 2021, 529, 3621-3632.	0.9	8
53	Dine (Damage-Induced Neuronal Endopeptidase). Protein and Peptide Letters, 2004, 11, 451-460.	0.4	8
54	Distinct functional consequences of ECEL1/DINE missense mutations in the pathogenesis of congenital contracture disorders. Acta Neuropathologica Communications, 2017, 5, 83.	2.4	7

SUMIKO KIRYU-SEO

#	Article	IF	CITATIONS
55	Identification and functional analysis of damage-induced neuronal endopeptidase (DINE), a nerve injury associated molecule. Kaibogaku Zasshi Journal of Anatomy, 2006, 81, 1-6.	1.2	6
56	Local ventilation system successfully reduced formaldehyde exposure during gross anatomy dissection classes. Anatomical Science International, 2010, 85, 251-252.	0.5	6
57	Molecular characterization and expression of the low-density lipoprotein receptor-related protein-10, a new member of the LDLR gene family. Biochemical and Biophysical Research Communications, 2010, 391, 1110-1115.	1.0	6
58	Proteolipid protein cannot replace P ₀ protein as the major structural protein of peripheral nervous system myelin. Glia, 2015, 63, 66-77.	2.5	5
59	TC10, a Rho family GTPase, is required for efficient axon regeneration in a neuronâ€ a utonomous manner. Journal of Neurochemistry, 2021, 157, 1196-1206.	2.1	5
60	Suture of Transected Nerve Suppresses Expression of BH3-Only Protein Noxa in Nerve-Transected Motor Neurons of C57BL/6J Mouse. Journal of Neurotrauma, 2007, 24, 876-884.	1.7	0
61	Accumulated fatigue induces over-activation and subsequent degeneration of melanotrophs in rat pituitary gland. Neuroscience Research, 2007, 58, S222.	1.0	0
62	Aberrant synapse formation of the phrenic nerves in DINE-deficient mice. Neuroscience Research, 2009, 65, S157-S158.	1.0	0
63	Enhanced expression of ADAMTS-1 mRNA is involved in IL-1RT1 (IL-1 receptor type 1) mediated signaling after hypoglossal nerve injury. Neuroscience Research, 2000, 38, S141.	1.0	0
64	Gene expression and manipulation in injured neurons. , 2002, , 115-124.		0