Casper Labuschagne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5805556/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Saturation of the Southern Ocean CO2 Sink Due to Recent Climate Change. Science, 2007, 316, 1735-1738.	6.0	779
2	Rising atmospheric methane: 2007–2014 growth and isotopic shift. Global Biogeochemical Cycles, 2016, 30, 1356-1370.	1.9	317
3	Atmospheric mercury concentrations observed at ground-based monitoring sites globally distributed in the framework of the GMOS network. Atmospheric Chemistry and Physics, 2016, 16, 11915-11935.	1.9	185
4	A vegetation control on seasonal variations in global atmospheric mercury concentrations. Nature Geoscience, 2018, 11, 244-250.	5.4	180
5	A review of surface ozone in the polar regions. Atmospheric Environment, 2007, 41, 5138-5161.	1.9	133
6	Gaseous mercury emissions from a fire in the Cape Peninsula, South Africa, during January 2000. Geophysical Research Letters, 2001, 28, 1483-1486.	1.5	90
7	Classifying aerosol type using in situ surface spectral aerosol optical properties. Atmospheric Chemistry and Physics, 2017, 17, 12097-12120.	1.9	86
8	Global CO ₂ fluxes inferred from surface air-sample measurements and from TCCON retrievals of the CO ₂ total column. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	85
9	Five-year records of mercury wet deposition flux at GMOS sites in the Northern and Southern hemispheres. Atmospheric Chemistry and Physics, 2017, 17, 2689-2708.	1.9	69
10	Baseline air mass selection at Cape Point, South Africa: application of 222Rn and other filter criteria to CO2. Atmospheric Environment, 2004, 38, 5693-5702.	1.9	66
11	A global analysis of climate-relevant aerosol properties retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories. Atmospheric Measurement Techniques, 2020, 13, 4353-4392.	1.2	65
12	Multidecadal trend analysis of in situ aerosol radiative properties around the world. Atmospheric Chemistry and Physics, 2020, 20, 8867-8908.	1.9	58
13	Total gaseous mercury concentrations at the Cape Point GAW station and their seasonality. Geophysical Research Letters, 2008, 35, .	1.5	54
14	Gaseous elemental mercury depletion events observed at Cape Point during 2007–2008. Atmospheric Chemistry and Physics, 2010, 10, 1121-1131.	1.9	52
15	Methods to Investigate the Global Atmospheric Microbiome. Frontiers in Microbiology, 2019, 10, 243.	1.5	50
16	Overview of the NOAA/ESRL Federated Aerosol Network. Bulletin of the American Meteorological Society, 2019, 100, 123-135.	1.7	36
17	Seasonal cycles of O 3 in the marine boundary layer: Observation and model simulation comparisons. Journal of Geophysical Research D: Atmospheres, 2016, 121, 538-557.	1.2	29
18	Emissions of mercury in southern Africa derived from long-term observations at Cape Point, South Africa. Atmospheric Chemistry and Physics, 2012, 12, 7465-7474.	1.9	28

CASPER LABUSCHAGNE

#	Article	IF	CITATIONS
19	²²² Rn-calibrated mercury fluxes from terrestrial surface of southern Africa. Atmospheric Chemistry and Physics, 2013, 13, 6421-6428.	1.9	24
20	Trend of atmospheric mercury concentrations at Cape Point for 1995–2004 and since 2007. Atmospheric Chemistry and Physics, 2017, 17, 2393-2399.	1.9	24
21	Mercury in the atmosphere and in rainwater at Cape Point, South Africa. Atmospheric Environment, 2016, 125, 24-32.	1.9	23
22	Atmospheric mercury in the Southern Hemisphere – Part 1: Trend and inter-annual variations in atmospheric mercury at Cape Point, South Africa, in 2007–2017, and on Amsterdam Island in 2012–2017. Atmospheric Chemistry and Physics, 2020, 20, 7683-7692.	1.9	22
23	Trace gas variations at Cape Point, South Africa, during May 1997 following a regional biomass burning episode. Atmospheric Environment, 2001, 35, 777-786.	1.9	21
24	Worldwide measurements of radioxenon background near isotope production facilities, a nuclear power plant and at remote sites: the "EU/JA-Il―Project. Journal of Radioanalytical and Nuclear Chemistry, 2013, 296, 1133-1142.	0.7	18
25	Characterising fifteen years of continuous atmospheric radon activity observations at Cape Point (South Africa). Atmospheric Environment, 2018, 176, 30-39.	1.9	18
26	Cape Point GAW Station 222Rn detector: factors affecting sensitivity and accuracy. Atmospheric Environment, 2002, 36, 2257-2262.	1.9	17
27	Statistical exploration of gaseous elemental mercury (GEM) measured at Cape Point from 2007 to 2011. Atmospheric Chemistry and Physics, 2015, 15, 10271-10280.	1.9	15
28	Investigating the Long-Range Transport of Aerosol Plumes Following the Amazon Fires (August 2019): A Multi-Instrumental Approach from Ground-Based and Satellite Observations. Remote Sensing, 2020, 12, 3846.	1.8	14
29	Continuous measurements of greenhouse gases and atmospheric oxygen at the Namib Desert Atmospheric Observatory. Atmospheric Measurement Techniques, 2015, 8, 2233-2250.	1.2	12
30	The GAWâ€₱FR aerosol optical depth network: The 2008–2013 time series at Cape Point Station, South Africa. Journal of Geophysical Research D: Atmospheres, 2015, 120, 5070-5084.	1.2	11
31	Ozone Concentrations and Their Potential Impacts on Vegetation in Southern Africa. Developments in Environmental Science, 2013, 13, 429-450.	0.5	9
32	A review of four decades of atmospheric trace gas measurements at Cape Point, South Africa. Transactions of the Royal Society of South Africa, 2018, 73, 113-132.	0.8	9
33	Atmospheric HCFC-22, HFC-125, and HFC-152a at Cape Point, South Africa. Environmental Science & Technology, 2019, 53, 8967-8975.	4.6	9
34	Twenty-one years of passive sampling monitoring of SO2, NO2 and O3 at the Cape Point GAW station, South Africa. Atmospheric Environment, 2020, 222, 117128.	1.9	9
35	Emissions and Marine Boundary Layer Concentrations of Unregulated Chlorocarbons Measured at Cape Point, South Africa. Environmental Science & Technology, 2020, 54, 10514-10523.	4.6	9
36	Studies on CO variation and trends over South Africa and the Indian Ocean using TES satellite data. South African Journal of Science, 2015, 111, 9.	0.3	8

#	Article	IF	CITATIONS
37	Development of a Simplified, Cost Effective GC-ECD Methodology for the Sensitive Detection of Bromoform in the Troposphere. Sensors, 2012, 12, 13583-13597.	2.1	4
38	Atmospheric Toluene and Benzene Mole Fractions at Cape Town and Cape Point and an Estimation of the Hydroxyl Radical Concentrations in the Air above the Cape Peninsula, South Africa. ACS Earth and Space Chemistry, 2020, 4, 24-34.	1.2	4
39	Stratosphere–Troposphere Exchange and O3 Variability in the Lower Stratosphere and Upper Troposphere over the Irene SHADOZ Site, South Africa. Atmosphere, 2020, 11, 586.	1.0	4
40	Assessment of regional carbon monoxide simulations over Africa and insights into source attribution and regional transport. Atmospheric Environment, 2022, 277, 119075.	1.9	4
41	Atmospheric bromoform at Cape Point, South Africa: an initial fixed-point data set on the African continent. Atmospheric Chemistry and Physics, 2018, 18, 5785-5797.	1.9	2
42	Volatile halocarbon measurements in the marine boundary layer at Cape Point, South Africa. Atmospheric Environment, 2019, 214, 116833.	1.9	2
43	A review of four decades of atmospheric trace gas measurements at Cape Point, South Africa. Clean Air Journal, 2018, 28, .	0.2	2
44	ATMOSPHERIC MERCURY MEASUREMENTS AT CAPE POINT, SOUTH AFRICA. Clean Air Journal, 2010, 18, 17-21.	0.2	2
45	222Rn calibrated mercury fluxes from terrestrial surfaces of southern Africa derived from observations at Cape Point, South Africa. E3S Web of Conferences, 2013, 1, 17005.	0.2	0
46	Trend and seasonal variation of atmospheric mercury concentrations at the Cape Point GAW observatory, South Africa. E3S Web of Conferences, 2013, 1, 17002.	0.2	0
47	Increasing mercury trend observed at Cape Point Global Atmosphere Watch (GAW) Station from 2007 – 2015. Clean Air Journal, 2017, 27, 07.	0.2	0
48	Leaf uptake of mercury lowers global air pollution. Clean Air Journal, 0, , .	0.2	0
49	Radon-222 measurements at Cape Point: A characterization of a 15 year time series. Clean Air Journal, 2018, 28, .	0.2	0
50	Wet season chemical composition of atmospheric wet deposition at Cape Point. Clean Air Journal, 2022, 32, .	0.2	0