
## Laurent E Prat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5805545/publications.pdf Version: 2024-02-01



LALIDENT F DOAT

| #  | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Solid–liquid extraction of andrographolide from plants—experimental study, kinetic reaction and<br>model. Separation and Purification Technology, 2004, 40, 147-154.                                            | 3.9 | 130       |
| 2  | Experimental and numerical study of droplets hydrodynamics in microchannels. AICHE Journal, 2006, 52, 4061-4070.                                                                                                | 1.8 | 109       |
| 3  | Continuous-flow photochemistry: A need for chemical engineering. Chemical Engineering and Processing: Process Intensification, 2016, 104, 120-132.                                                              | 1.8 | 109       |
| 4  | Mixing characterization inside microdroplets engineered on a microcoalescer. Chemical Engineering Science, 2007, 62, 1042-1048.                                                                                 | 1.9 | 95        |
| 5  | A Predictive Approach of the Influence of the Operating Parameters on the Size of Polymer Particles<br>Synthesized in a Simplified Microfluidic System. Langmuir, 2007, 23, 7745-7750.                          | 1.6 | 93        |
| 6  | Experiments of mass transfer with liquid–liquid slug flow in square microchannels. Chemical<br>Engineering Science, 2014, 105, 169-178.                                                                         | 1.9 | 83        |
| 7  | Co-axial capillaries microfluidic device for synthesizing size- and morphology-controlled polymer core-polymer shell particles. Lab on A Chip, 2009, 9, 3007.                                                   | 3.1 | 74        |
| 8  | Direct numerical simulations of mass transfer in square microchannels for liquid–liquid slug flow.<br>Chemical Engineering Science, 2008, 63, 5522-5530.                                                        | 1.9 | 69        |
| 9  | Some recent advances in the design and the use of miniaturized droplet-based continuous process:<br>Applications in chemistry and high-pressure microflows. Lab on A Chip, 2011, 11, 779-787.                   | 3.1 | 68        |
| 10 | Flow profile measurement in microchannel using the optical feedback interferometry sensing technique. Microfluidics and Nanofluidics, 2013, 14, 113-119.                                                        | 1.0 | 59        |
| 11 | Hydrodynamic structures of droplets engineered in rectangular micro-channels. Microfluidics and Nanofluidics, 2008, 5, 131-137.                                                                                 | 1.0 | 58        |
| 12 | Effect of microchannel aspect ratio on residence time distributions and the axial dispersion coefficient. Chemical Engineering and Processing: Process Intensification, 2009, 48, 554-559.                      | 1.8 | 55        |
| 13 | Modelling the kinetics of transesterification reaction of sunflower oil with ethanol in microreactors. Chemical Engineering Science, 2013, 87, 258-269.                                                         | 1.9 | 55        |
| 14 | On-line monitoring of the transesterification reaction between triglycerides and ethanol using near<br>infrared spectroscopy combined with gas chromatography. Bioresource Technology, 2011, 102,<br>6702-6709. | 4.8 | 47        |
| 15 | Accurate Measurement of the Photon Flux Received Inside Two Continuous Flow Microphotoreactors by Actinometry. International Journal of Chemical Reactor Engineering, 2014, 12, 257-269.                        | 0.6 | 45        |
| 16 | Photochemical synthesis of a "cage―compound in a microreactor: Rigorous comparison with a batch photoreactor. Chemical Engineering and Processing: Process Intensification, 2013, 64, 38-47.                    | 1.8 | 42        |
| 17 | Microfluidic synthesis and assembly of reactive polymer beads to form new structured polymer materials. Chemical Engineering Journal, 2008, 135, S93-S98.                                                       | 6.6 | 39        |
| 18 | Performance Evaluation of a Novel Concept "Open Plate Reactor―Applied to Highly Exothermic<br>Reactions. Chemical Engineering and Technology, 2005, 28, 1028-1034.                                              | 0.9 | 33        |

LAURENT E PRAT

| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Optimisation of solvent replacement procedures according to economic and environmental criteria.<br>Chemical Engineering Journal, 2006, 117, 169-177.                                                                                        | 6.6 | 27        |
| 20 | Impact of the diffusion limitation in microphotoreactors. AICHE Journal, 2015, 61, 1284-1299.                                                                                                                                                | 1.8 | 27        |
| 21 | On-line monitoring of the transesterification reaction carried out in microreactors using near infrared spectroscopy. Fuel, 2013, 104, 318-325.                                                                                              | 3.4 | 26        |
| 22 | Dynamic models for start-up operations of batch distillation columns with experimental validation.<br>Computers and Chemical Engineering, 2004, 28, 2735-2747.                                                                               | 2.0 | 22        |
| 23 | Two phase residence time distribution in a modified twin screw extruder. Chemical Engineering and Processing: Process Intensification, 1999, 38, 73-83.                                                                                      | 1.8 | 20        |
| 24 | Numerical study of the coupling between reaction and mass transfer for liquid-liquid slug flow in square microchannels. AICHE Journal, 2011, 57, 1719-1732.                                                                                  | 1.8 | 19        |
| 25 | Optical Feedback Interferometry for Velocity Measurement of Parallel Liquid-Liquid Flows in a<br>Microchannel. Sensors, 2016, 16, 1233.                                                                                                      | 2.1 | 18        |
| 26 | What are the needs for Process Intensification?. Oil and Gas Science and Technology, 2015, 70, 463-473.                                                                                                                                      | 1.4 | 17        |
| 27 | A one dimensional model for the prediction of extraction yields in a two phases modified twin-screw extruder. Chemical Engineering and Processing: Process Intensification, 2002, 41, 743-751.                                               | 1.8 | 16        |
| 28 | Online Monitoring of Vinyl Chloride Polymerization in a Microreactor Using Raman Spectroscopy.<br>Chemical Engineering and Technology, 2012, 35, 705-712.                                                                                    | 0.9 | 15        |
| 29 | Real time monitoring of the quiescent suspension polymerization of methyl methacrylate in<br>microreactors—Part 1. A kinetic study by Raman spectroscopy and evolution of droplet size. Chemical<br>Engineering Science, 2015, 131, 340-352. | 1.9 | 15        |
| 30 | Fast Batch to Continuous Solid-Liquid Extraction from Plants in Continuous Industrial Extractor.<br>Chemical Engineering and Technology, 2007, 30, 46-51.                                                                                    | 0.9 | 14        |
| 31 | Handling of Polymer Particles in Microchannels. Chemical Engineering and Technology, 2010, 33, 1779-1787.                                                                                                                                    | 0.9 | 14        |
| 32 | Influence of solvent choice on the optimisation of a reaction–separation operation: application to a<br>Beckmann rearrangement reaction. Separation and Purification Technology, 2004, 34, 273-281.                                          | 3.9 | 13        |
| 33 | Microreactors as a Tool for Acquiring Kinetic Data on Photochemical Reactions. Chemical Engineering and Technology, 2016, 39, 115-122.                                                                                                       | 0.9 | 13        |
| 34 | General design methodology for reactive liquid–liquid extraction: Application to dicarboxylic acid<br>recovery in fermentation broth. Chemical Engineering and Processing: Process Intensification, 2017,<br>113, 20-34.                     | 1.8 | 13        |
| 35 | Fast Batch to Continuous Transposition: Application to the Extraction of Andrographolide from Plants. Chemical Engineering and Technology, 2006, 29, 401-407.                                                                                | 0.9 | 12        |
| 36 | Increasing and decreasing droplets velocity in microchannels. Microfluidics and Nanofluidics, 2006, 2, 271-274.                                                                                                                              | 1.0 | 11        |

LAURENT E PRAT

| #  | Article                                                                                                                                                                                                                                                              | IF               | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|
| 37 | Selection of Sensors by a New Methodology Coupling a Classification Technique and Entropy Criteria.<br>Chemical Engineering Research and Design, 2007, 85, 825-838.                                                                                                  | 2.7              | 11        |
| 38 | Real time monitoring of the quiescent suspension polymerization of vinyl chloride in microreactors –<br>Part 2. A kinetic study by Raman spectroscopy and evolution of droplet size. Chemical Engineering<br>Science, 2016, 145, 279-293.                            | 1.9              | 11        |
| 39 | Transparent and Inexpensive Microfluidic Device for Twoâ€Phase Flow Systems with Highâ€Pressure<br>Performance. Chemical Engineering and Technology, 2014, 37, 1929-1937.                                                                                            | 0.9              | 9         |
| 40 | Experimental Methodology for Kinetic Acquisitions Using High Velocities in a Microfluidic Device.<br>Chemical Engineering and Technology, 2019, 42, 2223-2230.                                                                                                       | 0.9              | 5         |
| 41 | Exploration of a Two-Step Aqueous Process for the Valorization of Sodium Fluorosilicate (Na2SiF6),<br>an Intermediate Product of the Fluorosilicic Acid Conversion. Waste and Biomass Valorization, 2022,<br>13, 547-562.                                            | 1.8              | 5         |
| 42 | Solid–liquid transport in a modified co-rotating twin-screw extruder—dynamic simulator and<br>experimental validations. Chemical Engineering and Processing: Process Intensification, 2004, 43,<br>881-886.                                                          | 1.8              | 4         |
| 43 | A New Pulsation Policy in a Disk and Doughnut Pulsed Column Applied to Solid-Liquid Extraction of Andrographolide from Plants. Chemical Engineering and Technology, 2005, 28, 110-118.                                                                               | 0.9              | 4         |
| 44 | An Innovative Pulsed Column Applied to Solid-Liquid Contacting the BPC Column. Chemical Engineering and Technology, 2006, 29, 729-735.                                                                                                                               | 0.9              | 4         |
| 45 | Transposition of a triphosgene-based process for pharmaceutical development: from mg·h-1 to kg·h-1 of an unsymmetrical urea. Green Processing and Synthesis, 2013, 2, .                                                                                              | 1.3              | 4         |
| 46 | Stoichio-kinetic model discrimination and parameter identification in continuous microreactors.<br>Chemical Engineering Research and Design, 2016, 114, 39-51.                                                                                                       | 2.7              | 4         |
| 47 | Intensification of Ester Production in a Continuous Reactor. International Journal of Chemical Reactor Engineering, 2009, 7, .                                                                                                                                       | 0.6              | 3         |
| 48 | Real time monitoring of the quiescent suspension copolymerization of vinyl chloride with methyl<br>methacrylate in microreactors – Part 3. A kinetic study by raman spectroscopy and evolution of<br>droplet size. Chemical Engineering Science, 2017, 173, 493-506. | 1.9              | 3         |
| 49 | Effects of Process Parameters on an Inverse Concentrated Miniemulsion Flowing in a Microchannel.<br>Chemical Engineering and Technology, 2018, 41, 1965-1974.                                                                                                        | 0.9              | 3         |
| 50 | Optimisation of a Methyl Acetate Production Process by Reactive Batch Distillation. Computer Aided Chemical Engineering, 2002, , 475-480.                                                                                                                            | 0.3              | 2         |
| 51 | Fast Built and Designed Microdevices for Early‣tage Liquidâ€Liquid System Studies. Chemical<br>Engineering and Technology, 2009, 32, 1823-1830.                                                                                                                      | 0.9              | 2         |
| 52 | Mise en Å"uvre de micro-réacteurs à l'échelle de micro-gouttesÂ: caractérisation du mélange. Houill<br>Blanche, 2006, 92, 50-55.                                                                                                                                     | <sup>e</sup> 0.3 | 2         |
| 53 | Carbonation of Calcium Silicate Hydrates as Secondary Raw Material from the Recovery of Hexafluorosilicic Acid. ACS Sustainable Chemistry and Engineering, 2022, 10, 6023-6032.                                                                                      | 3.2              | 2         |
| 54 | Optimisation of global pharmaceutical syntheses integrating environmental aspects. Computer Aided<br>Chemical Engineering, 2001, 9, 1127-1132.                                                                                                                       | 0.3              | 1         |

LAURENT E PRAT

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Measurement-based run-to-run optimization of a batch reaction-distillation system. Computer Aided Chemical Engineering, 2005, 20, 1417-1422.                                                      | 0.3 | 1         |
| 56 | Pre-Design of a Continuous Intensified Reactor Based on Pure Thermo-Chemical Optimisation.<br>Chemical Product and Process Modeling, 2008, 3, .                                                   | 0.5 | 1         |
| 57 | Gas-liquid flow characterization and mass transfer study in a microreactor for oligomerization catalyst testing. Chemical Engineering and Processing: Process Intensification, 2021, 166, 108476. | 1.8 | 1         |
| 58 | A global approach for the optimisation of batch reaction-separation processes. Computer Aided<br>Chemical Engineering, 2003, 14, 641-646.                                                         | 0.3 | 0         |
| 59 | Use of Pulsation to Control Polydispersed Particle Flow in a New Type of Pulsed Column. Chemical<br>Engineering and Technology, 2007, 30, 1571-1575.                                              | 0.9 | 0         |
| 60 | Development of continuous processes for vegetable oil alcoholysis in microfluidic devices.<br>Oleagineux Corps Gras Lipides, 2013, 20, 23-32.                                                     | 0.2 | 0         |
| 61 | Recovery of succinic acid in fermentation broth via reactive LL extraction: effect of chemical kinetics and solvent choice. Computer Aided Chemical Engineering, 2017, , 1099-1104.               | 0.3 | Ο         |