Izumi Ohzawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5804959/publications.pdf

Version: 2024-02-01

41 papers

3,732 citations

236612 25 h-index 276539 41 g-index

44 all docs

44 docs citations

44 times ranked $\begin{array}{c} 1637 \\ \text{citing authors} \end{array}$

#	Article	IF	CITATIONS
1	Local organization of spatial frequency tuning dynamics in the cat visual areas 17 and 18. Journal of Neurophysiology, 2020, 124, 178-191.	0.9	1
2	Subspace mapping of the three-dimensional spectral receptive field of macaque MT neurons. Journal of Neurophysiology, 2016, 116, 784-795.	0.9	5
3	Effects of generalized pooling on binocular disparity selectivity of neurons in the early visual cortex. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150266.	1.8	8
4	Integration of Multiple Spatial Frequency Channels in Disparity-Sensitive Neurons in the Primary Visual Cortex. Journal of Neuroscience, 2015, 35, 10025-10038.	1.7	8
5	Early Monocular Defocus Disrupts the Normal Development of Receptive-Field Structure in V2 Neurons of Macaque Monkeys. Journal of Neuroscience, 2014, 34, 13840-13854.	1.7	39
6	Spatial range and laminar structures of neuronal correlations in the cat primary visual cortex. Journal of Neurophysiology, 2014, 112, 705-718.	0.9	7
7	Activation of efferents from the basolateral amygdala during the retrieval of conditioned taste aversion. Neurobiology of Learning and Memory, 2013, 106, 210-220.	1.0	15
8	Receptive-Field Subfields of V2 Neurons in Macaque Monkeys Are Adult-Like Near Birth. Journal of Neuroscience, 2013, 33, 2639-2649.	1.7	19
9	Contributions of excitation and suppression in shaping spatial frequency selectivity of V1 neurons as revealed by binocular measurements. Journal of Neurophysiology, 2012, 107, 2220-2231.	0.9	10
10	Complex Cells in the Cat Striate Cortex Have Multiple Disparity Detectors in the Three-Dimensional Binocular Receptive Fields. Journal of Neuroscience, 2010, 30, 13826-13837.	1.7	15
11	Time Course of Cross-Orientation Suppression in the Early Visual Cortex. Journal of Neurophysiology, 2009, 101, 1463-1479.	0.9	15
12	Surround Suppression of V1 Neurons Mediates Orientation-Based Representation of High-Order Visual Features. Journal of Neurophysiology, 2009, 101, 1444-1462.	0.9	38
13	Internal Spatial Organization of Receptive Fields of Complex Cells in the Early Visual Cortex. Journal of Neurophysiology, 2007, 98, 1194-1212.	0.9	24
14	Encoding of Three-Dimensional Surface Slant in Cat Visual Areas 17 and 18. Journal of Neurophysiology, 2006, 95, 2768-2786.	0.9	22
15	Neural Basis for Stereopsis from Second-Order Contrast Cues. Journal of Neuroscience, 2006, 26, 4370-4382.	1.7	61
16	Receptive Field Properties of Neurons in the Early Visual Cortex Revealed by Local Spectral Reverse Correlation. Journal of Neuroscience, 2006, 26, 3269-3280.	1.7	49
17	Accuracy of Subspace Mapping of Spatiotemporal Frequency Domain Visual Receptive Fields. Journal of Neurophysiology, 2005, 93, 3524-3536.	0.9	47
18	Disinhibition Outside Receptive Fields in the Visual Cortex. Journal of Neuroscience, 2002, 22, 5659-5668.	1.7	36

#	Article	IF	CITATIONS
19	Chapter 11 Beyond the classical receptive field in the visual cortex. Progress in Brain Research, 2001, 134, 157-170.	0.9	36
20	Neural and perceptual adjustments to dim light. Visual Neuroscience, 2001, 18, 203-208.	0.5	13
21	Joint-encoding of motion and depth by visual cortical neurons: neural basis of the Pulfrich effect. Nature Neuroscience, 2001, 4, 513-518.	7.1	76
22	Suppression outside the classical cortical receptive field. Visual Neuroscience, 2000, 17, 369-379.	0.5	136
23	Contrast Gain Control in the Visual Cortex: Monocular Versus Binocular Mechanisms. Journal of Neuroscience, 2000, 20, 3017-3032.	1.7	66
24	Neural Mechanisms for Processing Binocular Information II. Complex Cells. Journal of Neurophysiology, 1999, 82, 909-924.	0.9	95
25	Neural Mechanisms for Encoding Binocular Disparity: Receptive Field Position Versus Phase. Journal of Neurophysiology, 1999, 82, 874-890.	0.9	89
26	Functional Micro-Organization of Primary Visual Cortex: Receptive Field Analysis of Nearby Neurons. Journal of Neuroscience, 1999, 19, 4046-4064.	1.7	257
27	Neural Mechanisms for Processing Binocular Information I. Simple Cells. Journal of Neurophysiology, 1999, 82, 891-908.	0.9	171
28	Asymmetric Suppression Outside the Classical Receptive Field of the Visual Cortex. Journal of Neuroscience, 1999, 19, 10536-10553.	1.7	237
29	Do animals see what we see?. Nature Neuroscience, 1999, 2, 586-588.	7.1	9
30	Linear and nonlinear contributions to orientation tuning of simple cells in the cat's striate cortex. Visual Neuroscience, 1999, 16, 1115-1121.	0.5	106
31	Mechanisms of stereoscopic vision: the disparity energy model. Current Opinion in Neurobiology, 1998, 8, 509-515.	2.0	87
32	Binocular Cross-Orientation Suppression in the Cat's Striate Cortex. Journal of Neurophysiology, 1998, 79, 227-239.	0.9	44
33	Encoding of Binocular Disparity by Complex Cells in the Cat's Visual Cortex. Journal of Neurophysiology, 1997, 77, 2879-2909.	0.9	210
34	Neuronal Mechanisms Underlying Stereopsis: How Do Simple Cells in the Visual Cortex Encode Binocular Disparity?. Perception, 1995, 24, 3-31.	0.5	77
35	A flexible PC-based physiological monitor for animal experiments. Journal of Neuroscience Methods, 1995, 62, 7-13.	1.3	11
36	Receptive-field dynamics in the central visual pathways. Trends in Neurosciences, 1995, 18, 451-458.	4.2	407

#	Article	IF	CITATIONS
37	Depth is encoded in the visual cortex by a specialized receptive field structure. Nature, 1991, 352, 156-159.	13.7	248
38	Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors. Science, 1990, 249, 1037-1041.	6.0	677
39	On the neurophysiological organization of binocular vision. Vision Research, 1990, 30, 1661-1676.	0.7	160
40	Cyclopean visual evoked potentials: A new test of binocular vision. Vision Research, 1988, 28, 1167-1170.	0.7	2
41	A comparison of contrast detection and discrimination. Vision Research, 1986, 26, 991-997.	0.7	99