
Ajith Anand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5804954/publications.pdf Version: 2024-02-01

Διίτη Δνιλνίο

#	Article	IF	CITATIONS
1	Greenhouse and field testing of transgenic wheat plants stably expressing genes for thaumatin-like protein, chitinase and glucanase against Fusarium graminearum. Journal of Experimental Botany, 2003, 54, 1101-1111.	4.8	271
2	The Phytotoxin Coronatine Contributes to Pathogen Fitness and Is Required for Suppression of Salicylic Acid Accumulation in Tomato Inoculated with <i>Pseudomonas syringae</i> v. <i>tomato</i> DC3000. Molecular Plant-Microbe Interactions, 2007, 20, 955-965.	2.6	222
3	Agrodrench: a novel and effective agroinoculation method for virus-induced gene silencing in roots and diverse Solanaceous species. Plant Journal, 2004, 40, 322-331.	5.7	214
4	Salicylic Acid and Systemic Acquired Resistance Play a Role in Attenuating Crown Gall Disease Caused by <i>Agrobacterium tumefaciens</i> Â. Plant Physiology, 2008, 146, 323-324.	4.8	163
5	A systematic study to determine the extent of gene silencing in <i>Nicotiana benthamiana </i> and other Solanaceae species when heterologous gene sequences are used for virusâ€induced gene silencing. New Phytologist, 2007, 176, 782-791.	7.3	118
6	Arabidopsis VIRE2 INTERACTING PROTEIN2 Is Required for Agrobacterium T-DNA Integration in Plants. Plant Cell, 2007, 19, 1695-1708.	6.6	109
7	Developing a flexible, highâ€efficiency <i>Agrobacterium</i> â€mediated sorghum transformation system with broad application. Plant Biotechnology Journal, 2018, 16, 1388-1395.	8.3	101
8	Monitoring in planta bacterial infection at both cellular and wholeâ€plant levels using the green fluorescent protein variant GFPuv. New Phytologist, 2007, 174, 212-223.	7.3	98
9	An improved ternary vector system for Agrobacterium-mediated rapid maize transformation. Plant Molecular Biology, 2018, 97, 187-200.	3.9	85
10	Identification and Characterization of Plant Genes Involved in Agrobacterium-Mediated Plant Transformation by Virus-Induced Gene Silencing. Molecular Plant-Microbe Interactions, 2007, 20, 41-52.	2.6	77
11	Stable transgene expression and random gene silencing in wheat. Plant Biotechnology Journal, 2003, 1, 241-251.	8.3	74
12	Agrobacterium-mediated high-frequency transformation of an elite commercial maize (Zea mays L.) inbred line. Plant Cell Reports, 2014, 33, 1767-1777.	5.6	65
13	Efficient Gene Targeting in Maize Using Inducible CRISPR-Cas9 and Marker-free Donor Template. Molecular Plant, 2020, 13, 1219-1227.	8.3	61
14	Use of non-integrating Zm-Wus2 vectors to enhance maize transformation. In Vitro Cellular and Developmental Biology - Plant, 2020, 56, 265-279.	2.1	59
15	High efficiency <i>Agrobacterium</i> â€mediated siteâ€specific gene integration in maize utilizing the <scp>FLP</scp> â€ <i><scp>FRT</scp></i> recombination system. Plant Biotechnology Journal, 2019, 17, 1636-1645.	8.3	44
16	Wuschel2 enables highly efficient CRISPR/Cas-targeted genome editing during rapid de novo shoot regeneration in sorghum. Communications Biology, 2022, 5, 344.	4.4	42
17	Development of a Lesion-Mimic Phenotype in a Transgenic Wheat Line Overexpressing Genes for Pathogenesis-Related (PR) Proteins Is Dependent on Salicylic Acid Concentration. Molecular Plant-Microbe Interactions, 2003, 16, 916-925.	2.6	39
18	Effect of Agrobacterium strain and plasmid copy number on transformation frequency, event quality and usable event quality in an elite maize cultivar. Plant Cell Reports, 2015, 34, 745-754.	5.6	36

Ajith Anand

#	Article	IF	CITATIONS
19	Apoplastic Extracts from a Transgenic Wheat Line Exhibiting Lesion-Mimic Phenotype Have Multiple Pathogenesis-Related Proteins That Are Antifungal. Molecular Plant-Microbe Interactions, 2004, 17, 1306-1317.	2.6	33
20	Several components of SKP1/Cullin/Fâ€box E3 ubiquitin ligase complex and associated factors play a role in <i>Agrobacterium</i> â€mediated plant transformation. New Phytologist, 2012, 195, 203-216.	7.3	32
21	Advancing Agrobacterium-Based Crop Transformation and Genome Modification Technology for Agricultural Biotechnology. Current Topics in Microbiology and Immunology, 2018, 418, 489-507.	1.1	20
22	In vitro propagation of Syzygium travancoricum Gamble – an endangered tree species. Plant Cell, Tissue and Organ Culture, 1999, 56, 59-63.	2.3	18
23	Vegetative propagation of three mangrove tree species by cuttings and air layering. Wetlands Ecology and Management, 2000, 8, 281-286.	1.5	18
24	An Efficient Gene Excision System in Maize. Frontiers in Plant Science, 2020, 11, 1298.	3.6	15
25	Indirect Organogenesis from the Leaf Explants of Medicinally Important Plant Curculigo orchioides Gaertn. Journal of Plant Biochemistry and Biotechnology, 1999, 8, 113-115.	1.7	5
26	The role of RAR1 inAgrobacterium-mediated plant transformation. Plant Signaling and Behavior, 2013, 8, e26784.	2.4	4
27	Overexpression of VIRE2-INTERACTING PROTEIN2 in Arabidopsis regulates genes involved in Agrobacterium-mediated plant transformation and abiotic stresses. Scientific Reports, 2019, 9, 13503.	3.3	4
28	Novel Ternary Vectors for Efficient Sorghum Transformation. Methods in Molecular Biology, 2019, 1931, 185-196.	0.9	3