List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5804939/publications.pdf Version: 2024-02-01

		13827	23472
211	14,429	67	111
papers	citations	h-index	g-index
010	010	010	0004
212	212	212	9884
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The importance of ceramide headgroup for lipid localisation in skin lipid models. Biochimica Et Biophysica Acta - Biomembranes, 2022, 1864, 183886.	1.4	8
2	High concentration of the ester-linked ï‰-hydroxy ceramide increases the permeability in skin lipid model membranes. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183487.	1.4	14
3	Perspective and Consensus Opinion: Good Practices for Using Organotypic Skin and Epidermal Equivalents in Experimental Dermatology Research. Journal of Investigative Dermatology, 2021, 141, 203-205.	0.3	13
4	The Importance of Free Fatty Chain Length on the Lipid Organization in the Long Periodicity Phase. International Journal of Molecular Sciences, 2021, 22, 3679.	1.8	9
5	Improved organotypic skin model with reduced quantity of monounsaturated ceramides by inhibiting stearoyl-CoA desaturase-1. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158885.	1.2	3
6	Antigen Uptake After Intradermal Microinjection Depends on Antigen Nature and Formulation, but Not on Injection Depth. Frontiers in Allergy, 2021, 2, 642788.	1.2	5
7	Multitargeted Approach for the Optimization of Morphogenesis and Barrier Formation in Human Skin Equivalents. International Journal of Molecular Sciences, 2021, 22, 5790.	1.8	6
8	Engineering of an automated nano-droplet dispensing system for fabrication of antigen-loaded dissolving microneedle arrays. International Journal of Pharmaceutics, 2021, 600, 120473.	2.6	10
9	Increased Levels of Short-Chain Ceramides Modify the Lipid Organization and Reduce the Lipid Barrier of Skin Model Membranes. Langmuir, 2021, 37, 9478-9489.	1.6	17
10	Human skin equivalents: Impaired barrier function in relation to the lipid and protein properties of the stratum corneum. Advanced Drug Delivery Reviews, 2021, 175, 113802.	6.6	41
11	Effects of ozone on stratum corneum lipid integrity and assembly. Chemistry and Physics of Lipids, 2021, 240, 105121.	1.5	4
12	Dry skin management: practical approach in light of latest research on skin structure and function. Journal of Dermatological Treatment, 2020, 31, 716-722.	1.1	34
13	The effects of LXR agonist T0901317 and LXR antagonist GSK2033 on morphogenesis and lipid properties in full thickness skin models. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158546.	1.2	11
14	The Cornified Envelope-Bound Ceramide Fraction Is Altered in Patients with Atopic Dermatitis. Journal of Investigative Dermatology, 2020, 140, 1097-1100.e4.	0.3	8
15	Hyperalphalipoproteinemic scavenger receptor Bl knockout mice exhibit a disrupted epidermal lipid barrier. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158592.	1.2	10
16	Glucosylated cholesterol in skin: Synthetic role of extracellular glucocerebrosidase. Clinica Chimica Acta, 2020, 510, 707-710.	0.5	4
17	Arrangement of Ceramides in the Skin: Sphingosine Chains Localize at a Single Position in Stratum Corneum Lipid Matrix Models. Langmuir, 2020, 36, 10270-10278.	1.6	15
18	Raman and AFM-IR chemical imaging of stratum corneum model membranes. Canadian Journal of Chemistry, 2020, 98, 495-501.	0.6	3

#	Article	IF	CITATIONS
19	Barrier lipid composition and response to plasma lipids: A direct comparison of mouse dorsal back and ear skin. Experimental Dermatology, 2020, 29, 548-555.	1.4	6
20	Glucocerebrosidase: Functions in and Beyond the Lysosome. Journal of Clinical Medicine, 2020, 9, 736.	1.0	37
21	Skin of atopic dermatitis patients shows disturbed β-glucocerebrosidase and acid sphingomyelinase activity that relates to changes in stratum corneum lipid composition. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158673.	1.2	20
22	Hyaluronan molecular weight: Effects on dissolution time of dissolving microneedles in the skin and on immunogenicity of antigen. European Journal of Pharmaceutical Sciences, 2020, 146, 105269.	1.9	30
23	One Peptide for Them All: Gold Nanoparticles of Different Sizes Are Stabilized by a Common Peptide Amphiphile. ACS Nano, 2020, 14, 5874-5886.	7.3	47
24	Skin barrier lipid enzyme activity in Netherton patients is associated with protease activity and ceramide abnormalities. Journal of Lipid Research, 2020, 61, 859-869.	2.0	18
25	Complement Receptor Targeted Liposomes Encapsulating the Liver X Receptor Agonist GW3965 Accumulate in and Stabilize Atherosclerotic Plaques. Advanced Healthcare Materials, 2020, 9, e2000043.	3.9	14
26	Very Long Chain Lipids Favor the Formation of a Homogeneous Phase in Stratum Corneum Model Membranes. Langmuir, 2020, 36, 13899-13907.	1.6	5
27	Unravelling effects of relative humidity on lipid barrier formation in human skin equivalents. Archives of Dermatological Research, 2019, 311, 679-689.	1.1	7
28	Barrier Capability of Skin Lipid Models: Effect of Ceramides and Free Fatty Acid Composition. Langmuir, 2019, 35, 15376-15388.	1.6	28
29	Shedding light on the effects of 1,25-dihydroxyvitamin D3 on epidermal lipid barrier formation in three-dimensional human skin equivalents. Journal of Steroid Biochemistry and Molecular Biology, 2019, 189, 19-27.	1.2	7
30	Human skin equivalents cultured under hypoxia display enhanced epidermal morphogenesis and lipid barrier formation. Scientific Reports, 2019, 9, 7811.	1.6	27
31	Selectivity in cornified envelop binding of ceramides in human skin and the role of LXR inactivation on ceramide binding. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 1206-1213.	1.2	10
32	Hypercholesterolemia in young adult APOE mice alters epidermal lipid composition and impairs barrier function. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 976-984.	1.2	8
33	Characterization of human skin equivalents developed at body's core and surface temperatures. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 1122-1133.	1.3	16
34	Contribution of Palmitic Acid to Epidermal Morphogenesis and Lipid Barrier Formation in Human Skin Equivalents. International Journal of Molecular Sciences, 2019, 20, 6069.	1.8	20
35	Hyaluronan-based dissolving microneedles with high antigen content for intradermal vaccination: Formulation, physicochemical characterization and immunogenicity assessment. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 134, 49-59.	2.0	44
36	3D skin models for 3R research: The potential of 3D reconstructed skin models to study skin barrier function. Experimental Dermatology, 2018, 27, 501-511.	1.4	133

#	Article	IF	CITATIONS
37	Applying a vernix caseosa based formulation accelerates skin barrier repair by modulating lipid biosynthesis. Journal of Lipid Research, 2018, 59, 250-260.	2.0	19
38	Lipid bilayer-coated mesoporous silica nanoparticles carrying bovine hemoglobin towards an erythrocyte mimic. International Journal of Pharmaceutics, 2018, 543, 169-178.	2.6	25
39	Topically Applied Ceramides Interact with the Stratum Corneum Lipid Matrix in Compromised Ex Vivo Skin. Pharmaceutical Research, 2018, 35, 48.	1.7	17
40	Hollow microneedle-mediated micro-injections of a liposomal HPV E743–63 synthetic long peptide vaccine for efficient induction of cytotoxic and T-helper responses. Journal of Controlled Release, 2018, 269, 347-354.	4.8	75
41	Altered lipid properties of the stratum corneum in Canine Atopic Dermatitis. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 526-533.	1.4	27
42	Evidence of hydrocarbon nanodrops in highly ordered stratum corneum model membranes. Journal of Lipid Research, 2018, 59, 137-143.	2.0	19
43	Recapitulation of Native Dermal Tissue in a Full-Thickness Human Skin Model Using Human Collagens. Tissue Engineering - Part A, 2018, 24, 873-881.	1.6	14
44	Universal Applicator for Digitally-Controlled Pressing Force and Impact Velocity Insertion of Microneedles into Skin. Pharmaceutics, 2018, 10, 211.	2.0	32
45	Preferential arrangement of lipids in the long-periodicity phase of a stratum corneum matrix model. Journal of Lipid Research, 2018, 59, 2329-2338.	2.0	26
46	Development of PLGA nanoparticle loaded dissolving microneedles and comparison with hollow microneedles in intradermal vaccine delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 129, 111-121.	2.0	59
47	Coated and Hollow Microneedle-Mediated Intradermal Immunization in Mice with Diphtheria Toxoid Loaded Mesoporous Silica Nanoparticles. Pharmaceutical Research, 2018, 35, 189.	1.7	24
48	Solid and fluid segments within the same molecule of stratum corneum ceramide lipid. Quarterly Reviews of Biophysics, 2018, 51, e7.	2.4	18
49	Immunogenicity of diphtheria toxoid and poly(I:C) loaded cationic liposomes after hollow microneedle-mediated intradermal injection in mice. International Journal of Pharmaceutics, 2018, 547, 250-257.	2.6	25
50	Topically applied fatty acids are elongated before incorporation in the stratum corneum lipid matrix in compromised skin. Experimental Dermatology, 2017, 26, 36-43.	1.4	15
51	Efficient Eradication of Established Tumors in Mice with Cationic Liposome-Based Synthetic Long-Peptide Vaccines. Cancer Immunology Research, 2017, 5, 222-233.	1.6	60
52	Psoriasis-Associated Late Cornified Envelope (LCE) Proteins Have AntibacterialÂActivity. Journal of Investigative Dermatology, 2017, 137, 2380-2388.	0.3	53
53	Mesoporous Silica Nanoparticle-Coated Microneedle Arrays for Intradermal Antigen Delivery. Pharmaceutical Research, 2017, 34, 1693-1706.	1.7	40
54	Altered expression of epidermal lipid bio-synthesis enzymes in atopic dermatitis skin is accompanied by changes in stratum corneum lipid composition. Journal of Dermatological Science, 2017, 88, 57-66.	1.0	92

#	Article	IF	CITATIONS
55	Intradermal vaccination with hollow microneedles: A comparative study of various protein antigen and adjuvant encapsulated nanoparticles. Journal of Controlled Release, 2017, 266, 109-118.	4.8	110
56	In situ visualization of glucocerebrosidase in human skin tissue: zymography versus activity-based probe labeling. Journal of Lipid Research, 2017, 58, 2299-2309.	2.0	15
57	Hollow microneedle-mediated intradermal delivery of model vaccine antigen-loaded PLGA nanoparticles elicits protective T cell-mediated immunity to an intracellular bacterium. Journal of Controlled Release, 2017, 266, 27-35.	4.8	48
58	Determination of the influence of C24 D/(2R)- and L/(2S)-isomers of the CER[AP] on the lamellar structure of stratum corneum model systems using neutron diffraction. Chemistry and Physics of Lipids, 2017, 209, 29-36.	1.5	12
59	Diphtheria toxoid and N -trimethyl chitosan layer-by-layer coated pH-sensitive microneedles induce potent immune responses upon dermal vaccination in mice. Journal of Controlled Release, 2017, 262, 28-36.	4.8	57
60	Improved epidermal barrier formation in human skin models by chitosan modulated dermal matrices. PLoS ONE, 2017, 12, e0174478.	1.1	28
61	Stratum Corneum Lipids: Their Role for the Skin Barrier Function in Healthy Subjects and Atopic Dermatitis Patients. Current Problems in Dermatology, 2016, 49, 8-26.	0.8	243
62	Predicting the optimal geometry of microneedles and their array for dermal vaccination using a computational model. Computer Methods in Biomechanics and Biomedical Engineering, 2016, 19, 1599-1609.	0.9	23
63	Repeated fractional intradermal dosing of an inactivated polio vaccine by a single hollow microneedle leads to superior immune responses. Journal of Controlled Release, 2016, 242, 141-147.	4.8	38
64	Quantitative analysis of ceramides using a novel lipidomics approach with three dimensional response modelling. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1652-1661.	1.2	41
65	Determination of Depth-Dependent Intradermal Immunogenicity of Adjuvanted Inactivated Polio Vaccine Delivered by Microinjections via Hollow Microneedles. Pharmaceutical Research, 2016, 33, 2269-2279.	1.7	25
66	Free fatty acids chain length distribution affects the permeability of skin lipid model membranes. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2050-2059.	1.4	40
67	A theoretical compartment model for antigen kinetics in the skin. European Journal of Pharmaceutical Sciences, 2016, 84, 18-25.	1.9	4
68	Modulation of stratum corneum lipid composition and organization of human skin equivalents by specific medium supplements. Experimental Dermatology, 2015, 24, 669-674.	1.4	17
69	Skin Lipids: Localization of Ceramide and Fatty Acid in the Unit Cell of the Long Periodicity Phase. Biophysical Journal, 2015, 108, 2670-2679.	0.2	61
70	Exploring the potentials of nurture: 2nd and 3rd generation explant human skin equivalents. Journal of Dermatological Science, 2015, 77, 102-109.	1.0	4
71	Animal models for cutaneous vaccine delivery. European Journal of Pharmaceutical Sciences, 2015, 71, 112-122.	1.9	16
72	Diffusion profile of macromolecules within and between human skin layers for (trans)dermal drug delivery lournal of the Mechanical Behavior of Biomedical Materials, 2015, 50, 215-222	1.5	21

#	Article	IF	CITATIONS
73	Layer-by-Layer Assembly of Inactivated Poliovirus and <i>N</i> -Trimethyl Chitosan on pH-Sensitive Microneedles for Dermal Vaccination. Langmuir, 2015, 31, 8654-8660.	1.6	75
74	Explant cultures of atopic dermatitis biopsies maintain their epidermal characteristics in vitro. Cell and Tissue Research, 2015, 361, 789-797.	1.5	11
75	Diverse Regulation of Claudin-1 and Claudin-4 in Atopic Dermatitis. American Journal of Pathology, 2015, 185, 2777-2789.	1.9	105
76	IgG-loaded hyaluronan-based dissolving microneedles for intradermal protein delivery. Journal of Controlled Release, 2015, 218, 53-62.	4.8	78
77	Microneedle-based drug and vaccine delivery via nanoporous microneedle arrays. Drug Delivery and Translational Research, 2015, 5, 397-406.	3.0	89
78	Cationic Liposomes Loaded with a Synthetic Long Peptide and Poly(I:C): a Defined Adjuvanted Vaccine for Induction of Antigen-Specific T Cell Cytotoxicity. AAPS Journal, 2015, 17, 216-226.	2.2	77
79	An <i>ex vivo human</i> skin model for studying skin barrier repair. Experimental Dermatology, 2015, 24, 48-54.	1.4	38
80	Non-animal models of epithelial barriers (skin, intestine and lung) in research, industrial applications and regulatory toxicology. ALTEX: Alternatives To Animal Experimentation, 2015, 32, 327-378.	0.9	108
81	Barrier Properties of an N/TERT-Based Human Skin Equivalent. Tissue Engineering - Part A, 2014, 20, 3041-3049.	1.6	35
82	Intercellular Skin Barrier Lipid Composition and Organization in Netherton Syndrome Patients. Journal of Investigative Dermatology, 2014, 134, 1238-1245.	0.3	74
83	TNF-α and Th2 Cytokines Induce Atopic Dermatitis–Like Features on Epidermal Differentiation Proteins and Stratum Corneum Lipids in Human Skin Equivalents. Journal of Investigative Dermatology, 2014, 134, 1941-1950.	0.3	238
84	The importance of free fatty acid chain length for the skin barrier function in atopic eczema patients. Experimental Dermatology, 2014, 23, 45-52.	1.4	201
85	Combined LC/MS-platform for analysis of all major stratum corneum lipids, and the profiling of skin substitutes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 70-79.	1.2	94
86	In vitro model systems for studying the impact of organic chemicals on the skin barrier lipids. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 310-318.	1.4	10
87	Monounsaturated Fatty Acids Reduce the Barrier of Stratum Corneum Lipid Membranes by Enhancing the Formation of a Hexagonal Lateral Packing. Langmuir, 2014, 30, 6534-6543.	1.6	54
88	Chemical Modifications of Silicon Surfaces for the Generation of a Tunable Surface Isoelectric Point. Langmuir, 2014, 30, 1812-1819.	1.6	6
89	Novel Hollow Microneedle Technology for Depth-Controlled Microinjection-Mediated Dermal Vaccination: A Study with Polio Vaccine in Rats. Pharmaceutical Research, 2014, 31, 1846-54.	1.7	60
90	Parameter optimization toward optimal microneedle-based dermal vaccination. European Journal of Pharmaceutical Sciences, 2014, 64, 18-25.	1.9	15

JOKE A BOUWSTRA

#	Article	IF	CITATIONS
91	Ovalbumin-coated pH-sensitive microneedle arrays effectively induce ovalbumin-specific antibody and T-cell responses in mice. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 310-315.	2.0	30
92	Impact-Insertion Applicator Improves Reliability of Skin Penetration by Solid Microneedle Arrays. AAPS Journal, 2014, 16, 681-684.	2.2	50
93	The effect of the chain length distribution of free fatty acids on the mixing properties of stratum corneum model membranes. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1851-1861.	1.4	45
94	Characterization and skin permeation of ketoprofen-loaded vesicular systems. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 86, 156-166.	2.0	32
95	Nanolayered chemical modification of silicon surfaces with ionizable surface groups for pH-triggered protein adsorption and release: application to microneedles. Journal of Materials Chemistry B, 2013, 1, 4466.	2.9	26
96	Permeability and lipid organization of a novel psoriasis stratum corneum substitute. International Journal of Pharmaceutics, 2013, 457, 275-282.	2.6	16
97	Ceramides in the Skin Lipid Membranes: Length Matters. Langmuir, 2013, 29, 15624-15633.	1.6	101
98	Increased Presence of Monounsaturated Fatty Acids in the Stratum Corneum of Human Skin Equivalents. Journal of Investigative Dermatology, 2013, 133, 59-67.	0.3	51
99	Knockâ€down of filaggrin does not affect lipid organization and composition in stratum corneum of reconstructed human skin equivalents. Experimental Dermatology, 2013, 22, 807-812.	1.4	43
100	Characterization of Stratum Corneum Molecular Dynamics by Natural-Abundance 13C Solid-State NMR. PLoS ONE, 2013, 8, e61889.	1.1	64
101	Increase in short-chain ceramides correlates with an altered lipid organization and decreased barrier function in atopic eczema patients. Journal of Lipid Research, 2012, 53, 2755-2766.	2.0	349
102	Fluorescent Nanoparticle Adhesion Assay: a Novel Method for Surface p <i>K</i> _a Determination of Self-Assembled Monolayers on Silicon Surfaces. Langmuir, 2012, 28, 3403-3411.	1.6	36
103	Nature versus nurture: does human skin maintain its stratum corneum lipid properties <i>in vitro</i> ?. Experimental Dermatology, 2012, 21, 865-870.	1.4	30
104	Unraveling Barrier Properties of Three Different In-House Human Skin Equivalents. Tissue Engineering - Part C: Methods, 2012, 18, 1-11.	1.1	83
105	Adjuvanted, antigen loaded N-trimethyl chitosan nanoparticles for nasal and intradermal vaccination: Adjuvant- and site-dependent immunogenicity in mice. European Journal of Pharmaceutical Sciences, 2012, 45, 475-481.	1.9	94
106	A combined approach of vesicle formulations and microneedle arrays for transcutaneous immunization against hepatitis B virus. European Journal of Pharmaceutical Sciences, 2012, 46, 1-7.	1.9	26
107	Towards tailored vaccine delivery: Needs, challenges and perspectives. Journal of Controlled Release, 2012, 161, 363-376.	4.8	93
108	Microneedle technologies for (trans)dermal drug and vaccine delivery. Journal of Controlled Release, 2012, 161, 645-655.	4.8	504

#	Article	IF	CITATIONS
109	Investigating the barrier function of skin lipid models with varying compositions. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 79, 334-342.	2.0	51
110	Is an orthorhombic lateral packing and a proper lamellar organization important for the skin barrier function?. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 1529-1537.	1.4	80
111	Lamellar Lipid Organization and Ceramide Composition in the Stratum Corneum of Patients with Atopic Eczema. Journal of Investigative Dermatology, 2011, 131, 2136-2138.	0.3	96
112	Co-encapsulation of antigen and Toll-like receptor ligand in cationic liposomes affects the quality of the immune response in mice after intradermal vaccination. Vaccine, 2011, 29, 1045-1052.	1.7	83
113	Small is beautiful: N-trimethyl chitosan–ovalbumin conjugates for microneedle-based transcutaneous immunisation. Vaccine, 2011, 29, 4025-4032.	1.7	54
114	Effect of vesicle size on tissue localization and immunogenicity of liposomal DNA vaccines. Vaccine, 2011, 29, 4761-4770.	1.7	65
115	Adjuvant effect of cationic liposomes and CpG depends on administration route. Journal of Controlled Release, 2011, 154, 123-130.	4.8	65
116	Covalently stabilized trimethyl chitosan-hyaluronic acid nanoparticles for nasal and intradermal vaccination. Journal of Controlled Release, 2011, 156, 46-52.	4.8	94
117	LC/MS analysis of stratum corneum lipids: ceramide profiling and discovery. Journal of Lipid Research, 2011, 52, 1211-1221.	2.0	191
118	Transcutaneous Immunization Studies in Mice Using Diphtheria Toxoid-Loaded Vesicle Formulations and a Microneedle Array. Pharmaceutical Research, 2011, 28, 145-158.	1.7	43
119	The Pharmacokinetics and Pharmacological Effect of (S)-5-OH-DPAT Following Controlled Delivery with Transdermal Iontophoresis. Journal of Pharmaceutical Sciences, 2011, 100, 2996-3009.	1.6	5
120	Effect of the ω-acylceramides on the lipid organization of stratum corneum model membranes evaluated by X-ray diffraction and FTIR studies (Part I). Chemistry and Physics of Lipids, 2011, 164, 184-195.	1.5	53
121	Physicochemical characterization of drug-loaded rigid and elastic vesicles. International Journal of Pharmaceutics, 2011, 412, 142-147.	2.6	21
122	Transdermal iontophoretic delivery of a novel series of dopamine agonistsin vitro: physicochemical considerations. Journal of Pharmacy and Pharmacology, 2010, 62, 709-720.	1.2	3
123	Generation of Human Skin Equivalents Under Submerged Conditions—Mimicking the <i>In Utero</i> Environment. Tissue Engineering - Part A, 2010, 16, 1433-1441.	1.6	25
124	Microneedle-Based Transcutaneous Immunisation in Mice with N-Trimethyl Chitosan Adjuvanted Diphtheria Toxoid Formulations. Pharmaceutical Research, 2010, 27, 1837-1847.	1.7	73
125	Efficient induction of immune responses through intradermal vaccination with N-trimethyl chitosan containing antigen formulations. Journal of Controlled Release, 2010, 142, 374-383.	4.8	86
126	Administration routes affect the quality of immune responses: A cross-sectional evaluation of particulate antigen-delivery systems. Journal of Controlled Release, 2010, 147, 342-349.	4.8	194

JOKE A BOUWSTRA

#	Article	IF	CITATIONS
127	Advances in transcutaneous vaccine delivery: Do all ways lead to Rome?. Journal of Controlled Release, 2010, 148, 266-282.	4.8	177
128	Mechanistic studies of the transdermal iontophoretic delivery of 5-OH-DPAT in vitro. Journal of Pharmaceutical Sciences, 2010, 99, 275-285.	1.6	6
129	Model Membranes Prepared with Ceramide EOS, Cholesterol and Free Fatty Acids Form a Unique Lamellar Phase. Langmuir, 2010, 26, 4168-4175.	1.6	57
130	Nasal vaccination with N-trimethyl chitosan and PLGA based nanoparticles: Nanoparticle characteristics determine quality and strength of the antibody response in mice against the encapsulated antigen. Vaccine, 2010, 28, 6282-6291.	1.7	176
131	Antigenâ^'Adjuvant Nanoconjugates for Nasal Vaccination: An Improvement over the Use of Nanoparticles?. Molecular Pharmaceutics, 2010, 7, 2207-2215.	2.3	54
132	Lipid Organization of the Skin Barrier. Basic and Clinical Dermatology, 2009, , 17-40.	0.1	4
133	Skin barrier disruption by acetone: observations in a hairless mouse skin model. Archives of Dermatological Research, 2009, 301, 609-613.	1.1	37
134	Development of a murine model to evaluate the effect of vernix caseosa on skin barrier recovery. Experimental Dermatology, 2009, 18, 178-184.	1.4	34
135	Hydrophilic and lipophilic moisturizers have similar penetration profiles but different effects on SC water distribution <i>in vivo</i> . Experimental Dermatology, 2009, 18, 954-961.	1.4	29
136	Preclinical Studies with 5,10,15â€Tris(4â€Methylpyridinium)â€20â€Phenylâ€[21 <i>H</i> ,23 <i>H</i>]â€Porphine Trichloride for the Photodynamic Treatment of Superficial Mycoses Caused by <i>Trichophyton rubrum</i> . Photochemistry and Photobiology, 2009, 85, 733-739.	1.3	30
137	Mimicking vernix caseosa—Preparation and characterization of synthetic biofilms. International Journal of Pharmaceutics, 2009, 372, 59-65.	2.6	14
138	Long periodicity phase in extracted lipids of vernix caseosa obtained with equilibration at physiological temperature. Chemistry and Physics of Lipids, 2009, 158, 32-38.	1.5	4
139	Effect of synthetic vernix biofilms on barrier recovery of damaged mouse skin. Experimental Dermatology, 2009, 18, 695-703.	1.4	16
140	Water Distribution and Natural Moisturizer Factor Content in Human Skin Equivalents Are Regulated by Environmental Relative Humidity. Journal of Investigative Dermatology, 2008, 128, 378-388.	0.3	71
141	Temperature-Induced Changes in Structural and Physicochemical Properties of Vernix Caseosa. Journal of Investigative Dermatology, 2008, 128, 292-299.	0.3	16
142	In vivo assessment of safety of microneedle arrays in human skin. European Journal of Pharmaceutical Sciences, 2008, 35, 193-202.	1.9	248
143	Lipid organization in human and porcine stratum corneum differs widely, while lipid mixtures with porcine ceramides model human stratum corneum lipid organization very closely. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 1472-1482.	1.4	80
144	FTIR studies show lipophilic moisturizers to interact with stratum corneum lipids, rendering the more densely packed. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 1517-1524.	1.4	41

#	Article	IF	CITATIONS
145	Two new methods for preparing a unique stratum corneum substitute. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 2421-2429.	1.4	37
146	Lanolin-derived lipid mixtures mimic closely the lipid composition and organization of vernix caseosa lipids. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 2350-2360.	1.4	34
147	Preparation and characterization of diphtheria toxoid-loaded elastic vesicles for transcutaneous immunization. Journal of Drug Targeting, 2008, 16, 555-563.	2.1	14
148	Preparation and Characterization of Structured Hydrogel Microparticles Based on Cross-Linked Hyperbranched Polyglycerol. Langmuir, 2007, 23, 11819-11825.	1.6	50
149	Lipophilic and hydrophilic moisturizers show different actions on human skin as revealed by cryo scanning electron microscopy. Experimental Dermatology, 2007, 16, 891-898.	1.4	41
150	Skin Hydration—A Key Determinant in Topical Absorption. , 2007, , 115-128.		3
151	Preparation and characterization of a stratum corneum substitute for in vitro percutaneous penetration studies. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 636-644.	1.4	69
152	The skin barrier in healthy and diseased state. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 2080-2095.	1.4	493
153	New Insights into Ultrastructure, Lipid Composition and Organization of Vernix Caseosa. Journal of Investigative Dermatology, 2006, 126, 1823-1833.	0.3	81
154	A Novel in Vitro Percutaneous Penetration Model: Evaluation of Barrier Properties with P-Aminobenzoic Acid and Two of Its Derivatives. Pharmaceutical Research, 2006, 23, 951-960.	1.7	109
155	Synthesis and characterization of hyperbranched polyglycerol hydrogels. Biomaterials, 2006, 27, 5471-5479.	5.7	99
156	Pharmacokinetics and Pharmacodynamics Analysis of Transdermal Iontophoresis of 5-OH-DPAT in Rats: In vitro–in vivo Correlation. Journal of Pharmaceutical Sciences, 2006, 95, 1570-1585.	1.6	15
157	Elastic Vesicles as a Tool for Dermal and Transdermal Delivery. Journal of Liposome Research, 2006, 16, 273-280.	1.5	44
158	On-Line Diffusion Profile of a Lipophilic Model Dye in Different Depths of a Hair Follicle in Human Scalp Skin. Journal of Investigative Dermatology, 2005, 125, 775-782.	0.3	20
159	Transdermal iontophoresis of the dopamine agonist 5-OH-DPAT in human skin in vitro. Journal of Controlled Release, 2005, 103, 393-403.	4.8	33
160	Compartmental Modeling of Transdermal Iontophoretic Transport II: In Vivo Model Derivation and Application. Pharmaceutical Research, 2005, 22, 335-346.	1.7	21
161	Lipid mixtures prepared with well-defined synthetic ceramides closely mimic the unique stratum corneum lipid phase behavior. Journal of Lipid Research, 2005, 46, 2649-2656.	2.0	90
162	Vesicles as a tool for transdermal and dermal delivery. Drug Discovery Today: Technologies, 2005, 2, 67-74.	4.0	259

#	Article	IF	CITATIONS
163	Novel lipid mixtures based on synthetic ceramides reproduce the unique stratum corneum lipid organization. Journal of Lipid Research, 2004, 45, 923-932.	2.0	59
164	Quantitative Assessment of the Transport of Elastic and Rigid Vesicle Components and a Model Drug from these Vesicle Formulations into Human Skin In Vivo. Journal of Investigative Dermatology, 2004, 123, 902-910.	0.3	109
165	Acylceramide Head Group Architecture Affects Lipid Organization in Synthetic Ceramide Mixtures. Journal of Investigative Dermatology, 2004, 123, 911-916.	0.3	47
166	Transdermal iontophoresis of rotigotine: influence of concentration, temperature and current density in human skin in vitro. Journal of Controlled Release, 2004, 96, 159-167.	4.8	31
167	Time and depth resolved visualisation of the diffusion of a lipophilic dye into the hair follicle of fresh unfixed human scalp skin. Journal of Controlled Release, 2004, 98, 367-378.	4.8	31
168	Transdermal Iontophoresis of Rotigotine Across Human Stratum Corneum in Vitro: Influence of pH and NaCl Concentration. Pharmaceutical Research, 2004, 21, 844-850.	1.7	43
169	On-Line Visualization of Dye Diffusion in Fresh Unfixed Human Skin. Pharmaceutical Research, 2004, 21, 851-859.	1.7	15
170	Compartmental Modeling of Transdermal Iontophoretic Transport: I. In Vitro Model Derivation and Application. Pharmaceutical Research, 2004, 21, 1974-1984.	1.7	21
171	Modelling the stratum corneum lipid organisation with synthetic lipid mixtures: the importance of synthetic ceramide composition. Biochimica Et Biophysica Acta - Biomembranes, 2004, 1664, 132-140.	1.4	63
172	Pretreatment with a water-based surfactant formulation affects transdermal iontophoretic delivery of R-apomorphine in vitro. Pharmaceutical Research, 2003, 20, 653-659.	1.7	14
173	Skin penetration and mechanisms of action in the delivery of the D2-agonist rotigotine from surfactant-based elastic vesicle formulations. Pharmaceutical Research, 2003, 20, 1619-1625.	1.7	63
174	Permeant lipophilicity and vehicle composition influence accumulation of dyes in hair follicles of human skin. European Journal of Pharmaceutical Sciences, 2003, 18, 329-336.	1.9	41
175	The in vitro transport of pergolide from surfactant-based elastic vesicles through human skin: a suggested mechanism of action. Journal of Controlled Release, 2003, 86, 145-156.	4.8	112
176	The in vivo transport of elastic vesicles into human skin: effects of occlusion, volume and duration of application. Journal of Controlled Release, 2003, 90, 243-255.	4.8	76
177	Iontophoretic R-apomorphine delivery in combination with surfactant pretreatment: in vitro validation studies. International Journal of Pharmaceutics, 2003, 266, 61-68.	2.6	12
178	Water Distribution and Related Morphology in Human Stratum Corneum at Different Hydration Levels. Journal of Investigative Dermatology, 2003, 120, 750-758.	0.3	270
179	Structure of the skin barrier and its modulation by vesicular formulations. Progress in Lipid Research, 2003, 42, 1-36.	5.3	520
180	The in vivo and in vitro interactions of elastic and rigid vesicles with human skin. Biochimica Et Biophysica Acta - General Subjects, 2002, 1573, 130-140.	1.1	112

#	Article	IF	CITATIONS
181	Penetration and distribution of three lipophilic probes in vitro in human skin focusing on the hair follicle. Journal of Controlled Release, 2002, 83, 253-262.	4.8	50
182	In vitro iontophoresis of R-apomorphine across human stratum corneum. Journal of Controlled Release, 2002, 84, 49-57.	4.8	35
183	Phase Behavior of Stratum Corneum Lipid Mixtures Based on Human Ceramides: The Role of Natural and Synthetic Ceramide 1. Journal of Investigative Dermatology, 2002, 118, 606-617.	0.3	140
184	A new method to determine the distribution of a fluorophore in scalp skin with focus on hair follicles. Pharmaceutical Research, 2002, 19, 350-354.	1.7	11
185	Transdermal delivery of pergolide from surfactant-based elastic and rigid vesicles: characterization and in vitro transport studies. Pharmaceutical Research, 2002, 19, 991-997.	1.7	71
186	Elasticity of vesicles assessed by electron spin resonance, electron microscopy and extrusion measurements. International Journal of Pharmaceutics, 2001, 217, 13-24.	2.6	177
187	Aberrant Lipid Organization in Stratum Corneum of Patients with Atopic Dermatitis and Lamellar Ichthyosis. Journal of Investigative Dermatology, 2001, 117, 710-717.	0.3	184
188	X-ray microanalysis of cryopreserved human skin to study the effect of iontophoresis on percutaneous ion transport. Pharmaceutical Research, 2001, 18, 1012-1017.	1.7	6
189	Lontophoretic delivery of apomorphine in vitro: physicochemic considerations. Pharmaceutical Research, 2001, 18, 1509-1513.	1.7	20
190	Effect of elastic liquid-state vesicle on apomorphine iontophoresis transport through human skin in vitro. Pharmaceutical Research, 2001, 18, 1627-1630.	1.7	15
191	Barrier Characteristics of Different Human Skin Types Investigated with X-Ray Diffraction, Lipid Analysis, and Electron Microscopy Imaging. Journal of Investigative Dermatology, 2000, 114, 654-660.	0.3	114
192	Lipid and ultrastructural characterization of reconstructed skin models. International Journal of Pharmaceutics, 2000, 203, 211-225.	2.6	112
193	The effect of two azones on the lateral lipid organization of human stratum corneum and its permeability. Pharmaceutical Research, 2000, 17, 796-802.	1.7	17
194	Transdermal macromolecular delivery: real-time visualization of iontophoretic and chemically enhanced transport using two-photon excitation microscopy. Pharmaceutical Research, 2000, 17, 788-795.	1.7	32
195	Electron Diffraction Provides New Information on Human Stratum Corneum Lipid Organization Studied in Relation to Depth and Temperature. Journal of Investigative Dermatology, 1999, 113, 403-409.	0.3	144
196	Elasticity of vesicles affects hairless mouse skin structure and permeability. Journal of Controlled Release, 1999, 62, 367-379.	4.8	126
197	Effects of iontophoresis and electroporation on the stratum corneum. Advanced Drug Delivery Reviews, 1999, 35, 89-105.	6.6	119
198	Interactions of elastic and rigid vesicles with human skin in vitro: electron microscopy and two-photon excitation microscopy. Biochimica Et Biophysica Acta - Biomembranes, 1999, 1461, 155-173.	1.4	144

#	Article	IF	CITATIONS
199	A cross-section device to improve visualization of fluorescent probe penetration into the skin by confocal laser scanning microscopy. Pharmaceutical Research, 1998, 15, 352-356.	1.7	32
200	Application of vesicles to rat skin in vivo: a confocal laser scanning microscopy study Journal of Controlled Release, 1998, 56, 189-196.	4.8	65
201	Interactions between liposomes and human skin in vitro, a confocal laser scanning microscopy study. Biochimica Et Biophysica Acta - Biomembranes, 1998, 1371, 31-39.	1.4	93
202	pH, Cholesterol Sulfate, and Fatty Acids Affect the Stratum Corneum Lipid Organization. Journal of Investigative Dermatology Symposium Proceedings, 1998, 3, 69-74.	0.8	95
203	The Formation of Competent Barrier Lipids in Reconstructed Human Epidermis Requires the Presence of Vitamin C. Journal of Investigative Dermatology, 1997, 109, 348-355.	0.3	264
204	In vitro human skin barrier perturbation by oleic acid: Thermal analysis and freeze fracture electron microscopy studies. Thermochimica Acta, 1997, 293, 77-85.	1.2	63
205	Modes of action of terpene penetration enhancers in human skin; Differential scanning calorimetry, small-angle X-ray diffraction and enhancer uptake studies. International Journal of Pharmaceutics, 1996, 127, 9-26.	2.6	198
206	Structure of Fully Hydrated Human Stratum Corneum: A Freeze-Fracture Electron Microscopy Study. Journal of Investigative Dermatology, 1996, 106, 89-95.	0.3	113
207	Reduced Skin Barrier Function Parallels Abnormal Stratum Corneum Lipid Organization in Patients with Lamellar Ichthyosis. Journal of Investigative Dermatology, 1995, 105, 619-624.	0.3	139
208	Liposomes and niosomes as topical drug carriers: dermal and transdermal drug delivery. Journal of Controlled Release, 1994, 30, 1-15.	4.8	422
209	Estradiol permeation from nonionic surfactant vesicles through human stratum corneum in vitro. Pharmaceutical Research, 1994, 11, 659-664.	1.7	109
210	The lipid and protein structure of mouse stratum corneum: A wide and small angle diffraction study. Lipids and Lipid Metabolism, 1994, 1212, 183-192.	2.6	117
211	Structural Investigations of Human Stratum Corneum by Small-Angle X-Ray Scattering. Journal of Investigative Dermatology, 1991, 97, 1005-1012.	0.3	499