Amit Saha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5804895/publications.pdf

Version: 2024-02-01

686830 500791 1,157 28 13 28 citations h-index g-index papers 28 28 28 1478 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Highly Chemoselective Reduction of Aromatic Nitro Compounds by Copper Nanoparticles/Ammonium Formate. Journal of Organic Chemistry, 2008, 73, 6867-6870.	1.7	200
2	Microwaveâ€Assisted Simple and Efficient Ligand Free Copper Nanoparticle Catalyzed Arylâ€Sulfur Bond Formation. Advanced Synthesis and Catalysis, 2007, 349, 2690-2696.	2.1	152
3	A simple and facile Heck-type arylation of alkenes with diaryliodonium salts using magnetically recoverable Pd-catalyst. Green Chemistry, 2012, 14, 2133.	4.6	103
4	Remarkable influence of substituent in ionic liquid in control of reaction: simple, efficient and hazardous organic solvent free procedure for the synthesis of 2-aryl benzimidazoles promoted by ionic liquid, [pmim]BF4. Green Chemistry, 2009, 11, 733.	4.6	101
5	One-pot copper nanoparticle-catalyzed synthesis of S-aryl- and S-vinyl dithiocarbamates in water: high diastereoselectivity achieved for vinyl dithiocarbamates. Green Chemistry, 2008, 10, 1224.	4.6	98
6	O-Allylation of phenols with allylic acetates in aqueous media using a magnetically separable catalytic system. Green Chemistry, 2012, 14, 67-71.	4.6	84
7	Copper nano-catalyst: sustainable phenyl-selenylation of aryl iodides and vinyl bromides in water under ligand free conditions. Organic and Biomolecular Chemistry, 2009, 7, 1652.	1.5	82
8	Catalysis by Ionic Liquids: Significant Rate Acceleration with the Use of [pmlm]Br in the Threeâ€Component Synthesis of DithioÂcarbamates. European Journal of Organic Chemistry, 2008, 2008, 519-523.	1.2	54
9	Metal nanoparticles as efficient catalysts for organic reactions. Pure and Applied Chemistry, 2009, 81, 2337-2354.	0.9	38
10	Production enhancement and characterization of the polyhydroxyalkanoate produced by Natrinema ajinwuensis (as synonym) â‰; Natrinema altunense strain RM-G10. International Journal of Biological Macromolecules, 2018, 107, 1480-1490.	3.6	34
11	A modular synthesis of dithiocarbamate pendant unnatural \hat{l}_{\pm} -amino acids. Chemical Communications, 2012, 48, 8889.	2.2	32
12	Tsuji–Trost <i>N</i> àâ€Allylation with Allylic Acetates by Using a Cellulose–Palladium Catalyst. European Journal of Organic Chemistry, 2012, 2012, 6707-6709.	1.2	23
13	Ruthenium(iii)-catalysed phenylselenylation of allyl acetates by diphenyl diselenide and indium(i) bromide in neat: isolation and identification of intermediate. Organic and Biomolecular Chemistry, 2011, 9, 1763.	1.5	19
14	Aryldithiocarbamates as thiol alternatives in Cu-catalyzed C(aryl)–S coupling reactions using aryldiazonium tetrafluoroborate salts. Organic and Biomolecular Chemistry, 2019, 17, 9360-9366.	1.5	16
15	Iodine mediated direct coupling of benzylic alcohols with dithiocarbamate anions: An easy access of S-benzyl dithiocarbamate esters under neat reaction condition. Tetrahedron Letters, 2020, 61, 152382.	0.7	16
16	Ruthenium catalysed one-pot synthesis of S-allyl and cinnamyl dithiocarbamates using allyl and cinnamyl acetates in water. RSC Advances, 2012, 2, 6329.	1.7	14
17	Unprecedented thiocarbamidation of nitroarenes: a facile one-pot route to unsymmetrical thioureas. Organic Chemistry Frontiers, 2019, 6, 70-74.	2.3	14
18	Structural elucidation and antimicrobial activity of a diketopiperazine isolated from a <i>Bacillus</i> sp. associated with the marine sponge <i>Spongia officinalis</i> . Natural Product Research, 2021, 35, 2315-2323.	1.0	12

#	Article	IF	CITATIONS
19	Benign synthesis of thiophosphates, thiophosphinates and selenophosphates in neat condition using N-chalcogenoimides as the source of electrophilic sulfur/selenium. Tetrahedron Letters, 2019, 60, 150965.	0.7	11
20	Production enhancement of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in Halogeometricum borinquense, characterization of the bioplastic and desalination of the bioreactor effluent. Process Biochemistry, 2020, 94, 243-257.	1.8	11
21	Benign Oneâ€Pot Synthesis of Carbamo(dithioperoxo)thioate Compounds in Water Medium Using <i>N</i> â€(Arylthio)phthalimides as the Electrophilic Sulfur Source. ChemistrySelect, 2018, 3, 11895-11897.	0.7	10
22	A solvent- and catalyst-free tandem reaction: synthesis, and photophysical and biological applications of isoindoloquinazolinones. New Journal of Chemistry, 2020, 44, 4324-4331.	1.4	7
23	One-pot two-step dithiocarbamylation of styrenes: metal-free stereoselective synthesis of styrenyl dithiocarbamates. Organic and Biomolecular Chemistry, 2022, 20, 3491-3494.	1.5	7
24	Silver-catalyzed carbon–selenium cross-coupling using <i>N</i> -(phenylseleno)phthalimide: an alternate approach to the synthesis of organoselenides. Canadian Journal of Chemistry, 2017, 95, 51-56.	0.6	6
25	C–C Crossâ€Coupling Reactions of Organosilanes with Terminal Alkenes and Allylic Acetates Using Pd ^{II} Catalyst Supported on Starch Coated Magnetic Nanoparticles. European Journal of Organic Chemistry, 2020, 2020, 878-883.	1.2	5
26	Neat synthesis of $\langle i \rangle c \langle i \rangle$ -fused pyrroles and its application to macrolactamization. Synthetic Communications, 2021, 51, 2377-2386.	1.1	4
27	Neat synthesis of isothiazole compounds, and studies on their synthetic applications and photophysical properties. New Journal of Chemistry, 2022, 46, 11685-11694.	1.4	3
28	A Convenient, Clean and Expeditious Synthesis of bis(heterocyclyl)methanes Over High Surface Area Zirconium Phosphate Catalyst in Water: A Green Approach. Current Green Chemistry, 2018, 5, 40-46.	0.7	1