
Barbara KucharczykovÃ;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5804868/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comprehensive fracture tests of concrete for the determination of mechanical fracture parameters. Structural Concrete, 2022, 23, 505-520.	3.1	2
2	Effect of petrographic composition and chemistry of aggregate on the local and general fracture response of cementitious composites. Frattura Ed Integrita Strutturale, 2022, 16, 13-29.	0.9	2
3	Crack Deflection Under Mixed-Mode Loading Conditions in Fine-Grained Composites Based on Water Glass-Activated Slag. Journal of Multiscale Modeling, 2022, 13, .	1.1	0
4	Williams expansion utilized for assessment of crack behaviour under mixedâ€mode loading in alkaliâ€activated fineâ€grained composite. Fatigue and Fracture of Engineering Materials and Structures, 2021, 44, 1151-1161.	3.4	4
5	Mechanical Fracture and Fatigue Characteristics of Fine-Grained Composite Based on Sodium Hydroxide-Activated Slag Cured under High Relative Humidity. Applied Sciences (Switzerland), 2021, 11, 259.	2.5	7
6	Advanced Evaluation of the Freeze–Thaw Damage of Concrete Based on the Fracture Tests. Materials, 2021, 14, 6378.	2.9	3
7	Non-traditional Approach to the Evaluation of the Freeze-thaw Resistance of Concrete based on the Fracture Tests. MATEC Web of Conferences, 2020, 322, 01015.	0.2	0
8	Mechanical fracture characterization of alkali-activated slag mortars with standardized and natural sand. MATEC Web of Conferences, 2020, 310, 00021.	0.2	0
9	Determination of the static modulus of elasticity of cement mortars in the early stage of ageing. MATEC Web of Conferences, 2020, 310, 00029.	0.2	1
10	Development of the modulus of elasticity of cement materials in the early stage of ageing. AIP Conference Proceedings, 2020, , .	0.4	0
11	Ultrasonic NDT determination of initial and final setting time of cement paste. MATEC Web of Conferences, 2020, 310, 00027.	0.2	4
12	The influence of fibre pre-treatment on the mechanical properties of the geopolymer composites. MATEC Web of Conferences, 2020, 322, 01012.	0.2	2
13	Numerical Analysis of Shrinkage Process Based on Experimental Data. ACI Materials Journal, 2020, 117, .	0.2	1
14	Cost-Effective High-Performance Concrete: Experimental Analysis on Shrinkage. Materials, 2019, 12, 2730.	2.9	2
15	The analysis of acoustic emission signals detected during the loading of cement-based materials. Engineering Failure Analysis, 2019, 99, 18-25.	4.0	16
16	The Application of Acoustic Emission Technique to Monitor the Early Setting Process of Cement Pastes. MATEC Web of Conferences, 2019, 303, 04002.	0.2	1
17	Experimental determination of the influence of additives on shrinkage in self-compacting concrete. IOP Conference Series: Materials Science and Engineering, 2019, 549, 012009.	0.6	0
18	Influence of curing conditions on mechanical and fracture properties of alkali activated slag concrete. IOP Conference Series: Materials Science and Engineering, 2019, 660, 012004.	0.6	2

#	Article	IF	CITATIONS
19	Shrinkage of the alkali-activated slag mortars containing alternative activator. IOP Conference Series: Materials Science and Engineering, 2019, 660, 012001.	0.6	2
20	EXPERIMENTAL ANALYSIS FOCUSED ON THE MATERIAL CHARACTERISTICS OF THE CEMENT-BASED POLYMER-MODIFIED MORTARS. Acta Polytechnica CTU Proceedings, 2019, 22, 52-56.	0.3	0
21	Multi-parameter fracture mechanics. Frattura Ed Integrita Strutturale, 2019, 13, 65-73.	0.9	1
22	Observation of the Development of the Elastic Modulus and Strength in a Polymer-Cement Mortar Using the Acoustic Emission Method. Solid State Phenomena, 2018, 272, 76-81.	0.3	1
23	<i>In Situ</i> Determination of the Elastic Modulus of Concrete by Means of Ultrasonic Pulse Method. Solid State Phenomena, 2018, 272, 70-75.	0.3	Ο
24	Possibilities of Experimental Determinations of the Modulus of Elasticity in the early Stage of Ageing of Cement Composites. Solid State Phenomena, 2018, 276, 35-40.	0.3	0
25	Mechanical Fracture Parameters of Extruded Polystyrene. Key Engineering Materials, 2018, 776, 160-163.	0.4	4
26	Shrinkage of Fine-Grained Composites Based on Alkali-Activated Slag. Key Engineering Materials, 2018, 761, 7-10.	0.4	4
27	Repeatability and Reproductibility of Results of Fresh Concrete Testing. Solid State Phenomena, 2018, 272, 15-20.	0.3	0
28	Early-age behaviour of cement-based self-leveling flooring compounds. IOP Conference Series: Materials Science and Engineering, 2018, 385, 012032.	0.6	2
29	Fracture parameters of fine-grained composites based on the alkali-activated slag. IOP Conference Series: Materials Science and Engineering, 2018, 379, 012018.	0.6	1
30	Influence of a Shrinkage-Reducing Admixture on the Damage to the Internal Structure of Alkali-Activated Composites during Testing of the Modulus of Elasticity. Solid State Phenomena, 2018, 272, 28-33.	0.3	0
31	Monitoring of the Setting and early Hardening with Ultrasonic Waves. Key Engineering Materials, 2018, 776, 51-54.	0.4	6
32	The experimental comparison of parameters signals of acoustic emission during destructive test on composites based on cement. MATEC Web of Conferences, 2018, 219, 03005.	0.2	0
33	Crack initiation of selected geopolymer mortars with hemp fibers. Procedia Structural Integrity, 2018, 13, 578-583.	0.8	10
34	Destructive and non-destructive assessment of the frost resistance of concrete with different aggregate. IOP Conference Series: Materials Science and Engineering, 2018, 379, 012022.	0.6	8
35	Measurement and evaluation proposal of early age shrinkage of cement composites using shrinkage-cone. IOP Conference Series: Materials Science and Engineering, 2018, 379, 012038.	0.6	3
36	Influence of Coarse Aggregate Grain Size on Frost Resistance of Concrete. Key Engineering Materials, 2018, 776, 37-40.	0.4	2

Barbara KucharczykovÃ;

#	Article	IF	CITATIONS
37	Repeatability and Reproducibility of the Static Elastic Modulus of Concrete Measurement. Solid State Phenomena, 2018, 272, 214-219.	0.3	0
38	Experimental Determination of how the Static Modulus of Elasticity is Influenced by the Value of the Upper Loading Stress. Solid State Phenomena, 2018, 272, 64-69.	0.3	0
39	Development of the Elastic Modulus of Concrete under Different Curing Conditions. Procedia Engineering, 2017, 195, 96-101.	1.2	14
40	The Acoustic Emission Parameters Obtained during Three-point Bending Test on Thermal-stressed Concrete Specimens. Procedia Engineering, 2017, 190, 111-117.	1.2	4
41	Evaluation of Shrinkage, Mass Changes and Fracture Properties of Fine-aggregate Cement-based Composites during Ageing. Procedia Engineering, 2017, 190, 357-364.	1.2	7
42	Comparison of Measurements Methods Intended to Determination of the Shrinkage Development in Polymer Cement Mortars. Procedia Engineering, 2017, 195, 17-23.	1.2	4
43	Fracture properties of concrete specimens made from alkali activated binders. IOP Conference Series: Materials Science and Engineering, 2017, 236, 012068.	0.6	2
44	Using Acoustic Emission Methods to Monitor Cement Composites during Setting and Hardening. Applied Sciences (Switzerland), 2017, 7, 451.	2.5	20
45	Development of shrinkage and fracture parameters in selected fine-grained cement-based composites. MATEC Web of Conferences, 2017, 107, 00036.	0.2	1
46	Experimental assessment of the influence of multiple cyclic loading on the dynamic modulus of elasticity of concrete. MATEC Web of Conferences, 2017, 107, 00038.	0.2	1
47	Experimental Analysis on Shrinkage and Swelling in Ordinary Concrete. Advances in Materials Science and Engineering, 2017, 2017, 1-11.	1.8	12
48	Comprehensive Testing Techniques for the Measurement of Shrinkage and Structural Changes of Fine-Grained Cement-Based Composites during Ageing. Advances in Materials Science and Engineering, 2017, 2017, 1-10.	1.8	6
49	The use of the acoustic emission method for the monitoring of changes in the internal structure of polymer-cement mortars when testing the static compressive modulus of elasticity. MATEC Web of Conferences, 2017, 107, 00037.	0.2	0
50	Experimental analysis of the influence of concrete curing on the development of its elastic modulus over time. Materiali in Tehnologije, 2017, 51, 657-665.	0.5	11
51	Modelling of interfacial transition zone effect on resistance to crack propagation in fine-grained cement-based composites. Frattura Ed Integrita Strutturale, 2017, 11, 211-219.	0.9	3
52	Nonlinear Elastic Wave Spectroscopy with MLS Perturbation Signal. Procedia Engineering, 2016, 151, 306-312.	1.2	0
53	Crack initiation in concrete specimens based on alkali-activated binders. , 2016, , .		0
54	Experimental-computational determination of mechanical fracture. Life-cycle of Civil Engineering Systems, 2014, , 801-807.	0.1	10

#	Article	IF	CITATIONS
55	The porous aggregate pre-soaking in relation to the freeze–thaw resistance of lightweight aggregate concrete. Construction and Building Materials, 2012, 30, 761-766.	7.2	28
56	Determination and evaluation of the air permeability coefficient using Torrent Permeability Tester. Russian Journal of Nondestructive Testing, 2010, 46, 226-233.	0.9	23
57	Freeze-thaw resistance of concrete with porous aggregate. Procedia Engineering, 2010, 2, 521-529.	1.2	24
58	Influence of freeze–thaw cycles on fracture parameters values of lightweight concrete. Procedia Engineering, 2010, 2, 959-966.	1.2	17
59	Response of conservation measures from small cultivated watersheds, concerning runoff and erosion, under the impact of extreme rainfall events. IOP Conference Series: Earth and Environmental Science, 2008, 4, 012041.	0.3	Ο
60	Complex Evaluation of Fatigue Tests Results of Plain C30/37 and C45/55 Class Concrete Specimens. Key Engineering Materials, 0, 592-593, 801-804.	0.4	8
61	Mechanical Fracture Parameters of Mortars Modified by Burnt Clays. Advanced Materials Research, 0, 969, 241-244.	0.3	0
62	Pilot Study of the Effect of Admixtures in Fine-Grained Cement-Based Composites on Volume Changes and Fracture Parameters. Advanced Materials Research, 0, 969, 294-297.	0.3	0
63	Effect of Cement Dosage on Selected Mechanical Fracture Parameters of Concretes. Applied Mechanics and Materials, 0, 617, 239-242.	0.2	1
64	Alkali Activated Binders Based Concrete Specimens: Length Change and Fracture Tests. Solid State Phenomena, 0, 258, 623-626.	0.3	1
65	Experimental Analysis of the Development of Compressive Strength, Modulus of Elasticity and Acoustic Emission Parameters of Alkali-Activated Composites. Key Engineering Materials, 0, 760, 266-271.	0.4	Ο
66	Influence of Interfacial Transition Zone on Local and Overall Fracture Response of Cementitious Composites. Key Engineering Materials, 0, 784, 97-102.	0.4	4
67	Shrinkage in Cementitious Self-Levelling Floor Compounds. Solid State Phenomena, 0, 292, 23-28.	0.3	0
68	Influence of the Poisson's Ratio on the Value of the Dynamic Modulus of Elasticity of Cement Materials in the Early Stage of Ageing. Solid State Phenomena, 0, 292, 50-55.	0.3	2
69	Fracture Response of Fine-Grained Cement-Based Composite Specimens with Special Inclusions. Solid State Phenomena, 0, 292, 63-68.	0.3	4
70	Experimental Assessment of the Influence of Multiple Cyclic Loading on Selected Properties of Lightweight Concrete. Solid State Phenomena, 0, 292, 45-49.	0.3	0
71	Experimental Determination of Early Shrinkage of Alkali-Activated Slag. Solid State Phenomena, 0, 292, 114-119.	0.3	1
72	The Measurement of Shrinkage: Influence of Specimen Size. Key Engineering Materials, 0, 846, 197-201.	0.4	1

#	Article	IF	CITATIONS
73	Pilot Study of Mechanical Waves Passing through Fine-Grained Cement Composite during the Early Hydration Process. Key Engineering Materials, 0, 846, 243-247.	0.4	Ο
74	THE INFLUENCE OF A SHRINKAGE REDUCING ADMIXTURE ON THE LONG-TERM DEVELOPMENT OF DYNAMIC PROPERTIES IN ALKALI-ACTIVATED SLAG. Acta Polytechnica CTU Proceedings, 0, 22, 1-6.	0.3	1