Hilfiker Andres

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5804746/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Animal models and animal-free innovations for cardiovascular research: current status and routes to be explored. Consensus document of the ESC Working Group on Myocardial Function and the ESC Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2022, 118, 3016-3051.	1.8	30
2	Reâ€endothelialization of nonâ€detergent decellularized porcine vessels. Artificial Organs, 2021, 45, E53-E64.	1.0	4
3	Dot blots of solubilized extracellular matrix allow quantification of human antibodies bound to epitopes present in decellularized porcine pulmonary heart valves. Xenotransplantation, 2021, 28, e12646.	1.6	6
4	Fourier transform infrared spectroscopy coupled with machine learning classification for identification of oxidative damage in freeze-dried heart valves. Scientific Reports, 2021, 11, 12299.	1.6	6
5	Generation of glycans depleted decellularized porcine pericardium, using digestive enzymatic supplements and enzymatic mixtures for food industry. Xenotransplantation, 2021, 28, e12705.	1.6	5
6	Impaired immune response mediated by prostaglandin E2 promotes severe COVID-19 disease. PLoS ONE, 2021, 16, e0255335.	1.1	48
7	Immunological and functional features of decellularized xenogeneic heart valves after transplantation into GGTA1-KO pigs. International Journal of Energy Production and Management, 2021, 8, .	1.9	13
8	Residual immune response towards decellularized homografts may be highly individual. European Journal of Cardio-thoracic Surgery, 2021, 59, 773-782.	0.6	15
9	Freeze-Drying of Decellularized Heart Valves for Off-the-Shelf Availability. Methods in Molecular Biology, 2021, 2180, 731-739.	0.4	3
10	Decellularized pig pulmonary heart valves—Depletion of nucleic acids measured by proviral PERV <i>pol</i> . Xenotransplantation, 2020, 27, e12565.	1.6	8
11	Decellularization combined with enzymatic removal of Nâ€linked glycans and residual DNA reduces inflammatory response and improves performance of porcine xenogeneic pulmonary heart valves in an ovine in vivo model. Xenotransplantation, 2020, 27, e12571.	1.6	37
12	Characterization of Tissue Engineered Endothelial Cell Networks in Composite Collagen-Agarose Hydrogels. Gels, 2020, 6, 27.	2.1	13
13	Effects of six month personalized endurance training on work ability in middle-aged sedentary women: a secondary analysis of a randomized controlled trial. Journal of Occupational Medicine and Toxicology, 2020, 15, 8.	0.9	5
14	Toward acellular xenogeneic heart valve prostheses: Histological and biomechanical characterization of decellularized and enzymatically deglycosylated porcine pulmonary heart valve matrices. Xenotransplantation, 2020, 27, e12617.	1.6	20
15	Early Insight Into InÂVivo Recellularization of Cell-Free Allogenic Heart Valves. Annals of Thoracic Surgery, 2019, 108, 581-589.	0.7	24
16	Effects of personalized endurance training on cellular age and vascular function in middle-aged sedentary women. European Journal of Preventive Cardiology, 2019, 26, 1903-1906.	0.8	14
17	Identification of miR-143 as a Major Contributor for Human Stenotic Aortic Valve Disease. Journal of Cardiovascular Translational Research, 2019, 12, 447-458.	1.1	8
18	Formation of three-dimensional tubular endothelial cell networks under defined serum-free cell culture conditions in human collagen hydrogels. Scientific Reports, 2019, 9, 5437.	1.6	62

HILFIKER ANDRES

#	Article	IF	CITATIONS
19	Spectral fingerprinting of decellularized heart valve scaffolds. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 214, 95-102.	2.0	9
20	Human adipose tissue-derived stromal cells in combination with exogenous stimuli facilitate three-dimensional network formation of human endothelial cells derived from various sources. Vascular Pharmacology, 2018, 106, 28-36.	1.0	17
21	Decellularized mitral valve in a long-term sheep modelâ€. European Journal of Cardio-thoracic Surgery, 2018, 53, 1165-1172.	0.6	3
22	In vivo performance of freeze-dried decellularized pulmonary heart valve allo- and xenografts orthotopically implanted into juvenile sheep. Acta Biomaterialia, 2018, 68, 41-52.	4.1	46
23	Use of sucrose to diminish pore formation in freeze-dried heart valves. Scientific Reports, 2018, 8, 12982.	1.6	10
24	Dehydration improves biomechanical strength of bioartificial vascular graft material and allows its long-term storage. Innovative Surgical Sciences, 2018, 3, 215-224.	0.4	3
25	Outgrowing endothelial and smooth muscle cells for tissue engineering approaches. Journal of Tissue Engineering, 2017, 8, 204173141769885.	2.3	9
26	Six-Year-Old Sheep as a Clinically Relevant Large Animal Model for Aortic Valve Replacement Using Tissue-Engineered Grafts Based on Decellularized Allogenic Matrix. Tissue Engineering - Part C: Methods, 2017, 23, 953-963.	1.1	7
27	Targeting Endothelial Cells with Multifunctional GaN/Fe Nanoparticles. Nanoscale Research Letters, 2017, 12, 486.	3.1	7
28	Viability and proliferation of endothelial cells upon exposure to GaN nanoparticles. Beilstein Journal of Nanotechnology, 2016, 7, 1330-1337.	1.5	14
29	Decellularized GGTA1-KO pig heart valves do not bind preformed human xenoantibodies. Basic Research in Cardiology, 2016, 111, 39.	2.5	15
30	Effects of combined cryopreservation and decellularization on the biomechanical, structural and biochemical properties of porcine pulmonary heart valves. Acta Biomaterialia, 2016, 43, 71-77.	4.1	44
31	Dosage Compensation in <i>Drosophila</i> —a Model for the Coordinate Regulation of Transcription. Genetics, 2016, 204, 435-450.	1.2	74
32	Novel method for the generation of tissue-engineered vascular grafts based on a highly compacted fibrin matrix. Acta Biomaterialia, 2016, 29, 21-32.	4.1	71
33	Decellularized aortic allografts versus pulmonary autografts for aortic valve replacement in the growing sheep model: haemodynamic and morphological results at 20 months after implantation. European Journal of Cardio-thoracic Surgery, 2016, 49, 1228-1238.	0.6	37
34	In vitro maturation of large-scale cardiac patches based on a perfusable starter matrix by cyclic mechanical stimulation. Acta Biomaterialia, 2016, 30, 177-187.	4.1	50
35	No evidence for αGal epitope transfer from media containing FCS onto human endothelial cells in culture. Xenotransplantation, 2015, 22, 345-355.	1.6	5
36	Investigation of inflammatory response of decellularized porcine aortic tissue in mice: can we rely on this experimental setting?. European Journal of Cardio-thoracic Surgery, 2015, 47, e90-e91.	0.6	1

HILFIKER ANDRES

#	Article	IF	CITATIONS
37	Successful matrix guided tissue regeneration of decellularized pulmonary heart valve allografts in elderly sheep. Biomaterials, 2015, 52, 221-228.	5.7	50
38	BioVaM in the Rat Model: A New Approach of Vascularized 3D Tissue for Esophageal Replacement. European Journal of Pediatric Surgery, 2015, 25, 181-188.	0.7	2
39	Sucrose Diffusion in Decellularized Heart Valves for Freeze-Drying. Tissue Engineering - Part C: Methods, 2015, 21, 922-931.	1.1	25
40	Transplantation of Mucosa From Stomach to Esophagus to Prevent Stricture After Circumferential Endoscopic Submucosal Dissection of Early Squamous Cell. Gastroenterology, 2014, 146, 906-909.	0.6	42
41	Protein stability in stored decellularized heart valve scaffolds and diffusion kinetics of protective molecules. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 430-438.	1.1	22
42	Successful re-endothelialization of a perfusable biological vascularized matrix (BioVaM) for the generation of 3D artificial cardiac tissue. Basic Research in Cardiology, 2014, 109, 441.	2.5	37
43	Improvement of biological age by physical activity. International Journal of Cardiology, 2014, 176, 1187-1189.	0.8	32
44	Heart valve transplantation: the urgent need for non-immunogenic porcine heart valve matrices. Xenotransplantation, 2013, 20, 56-56.	1.6	0
45	Protein secondary structure and solvent accessibility of proteins in decellularized heart valve scaffolds. Biomedical Spectroscopy and Imaging, 2012, 1, 79-87.	1.2	3
46	An Analysis of Tissue-Engineered Pulmonary Valves Implanted in the Elderly Ovine Model. , 2012, , .		1
47	Mesenchymal stem cells and progenitor cells in connective tissue engineering and regenerative medicine: is there a future for transplantation?. Langenbeck's Archives of Surgery, 2011, 396, 489-497.	0.8	109
48	Detergent Decellularization of Heart Valves for Tissue Engineering: Toxicological Effects of Residual Detergents on Human Endothelial Cells. Artificial Organs, 2010, 34, 206-210.	1.0	213
49	Preclinical Testing of Tissue-Engineered Heart Valves Re-Endothelialized Under Simulated Physiological Conditions. Circulation, 2006, 114, 1559-65.	1.6	115
50	Clinical Application of Tissue Engineered Human Heart Valves Using Autologous Progenitor Cells. Circulation, 2006, 114, 1132-7.	1.6	252
51	Expression of CYR61, an Angiogenic Immediate Early Gene, in Arteriosclerosis and Its Regulation by Angiotensin II. Circulation, 2002, 106, 254-260.	1.6	103
52	Role of NAD(P)H Oxidase in Angiotensin II–Induced JAK/STAT Signaling and Cytokine Induction. Circulation Research, 2000, 87, 1195-1201.	2.0	256