

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5804401/publications.pdf Version: 2024-02-01

version: 2024-02-01

Ruiti

#	Article	IF	CITATIONS
1	DC Fault Detection and Location in Meshed Multiterminal HVDC Systems Based on DC Reactor Voltage Change Rate. IEEE Transactions on Power Delivery, 2017, 32, 1516-1526.	4.3	278
2	Optimized Operation of Current-Fed Dual Active Bridge DC–DC Converter for PV Applications. IEEE Transactions on Industrial Electronics, 2015, 62, 6986-6995.	7.9	225
3	High-Frequency-Link-Based Grid-Tied PV System With Small DC-Link Capacitor and Low-Frequency Ripple-Free Maximum Power Point Tracking. IEEE Transactions on Power Electronics, 2016, 31, 328-339.	7.9	157
4	Continuous Operation of Radial Multiterminal HVDC Systems Under DC Fault. IEEE Transactions on Power Delivery, 2016, 31, 351-361.	4.3	138
5	Parallel Operation of Full Power Converters in Permanent-Magnet Direct-Drive Wind Power Generation System. IEEE Transactions on Industrial Electronics, 2013, 60, 1619-1629.	7.9	121
6	Hybrid Cascaded Modular Multilevel Converter With DC Fault Ride-Through Capability for the HVDC Transmission System. IEEE Transactions on Power Delivery, 2015, 30, 1853-1862.	4.3	112
7	A Hybrid Modular Multilevel Converter With Novel Three-Level Cells for DC Fault Blocking Capability. IEEE Transactions on Power Delivery, 2015, 30, 2017-2026.	4.3	99
8	A Zero-Voltage Switching Three-Phase Inverter. IEEE Transactions on Power Electronics, 2014, 29, 1200-1210.	7.9	95
9	Distributed PLL-Based Control of Offshore Wind Turbines Connected With Diode-Rectifier-Based HVDC Systems. IEEE Transactions on Power Delivery, 2018, 33, 1328-1336.	4.3	81
10	Analysis and Fault Control of Hybrid Modular Multilevel Converter With Integrated Battery Energy Storage System. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017, 5, 64-78.	5.4	76
11	Control of Parallel Multiple Converters for Direct-Drive Permanent-Magnet Wind Power Generation Systems. IEEE Transactions on Power Electronics, 2012, 27, 1259-1270.	7.9	70
12	Control and Optimization of Residential Photovoltaic Power Generation System With High Efficiency Isolated Bidirectional DC–DC Converter. IEEE Access, 2019, 7, 116107-116122.	4.2	68
13	Influence of third harmonic injection on modular multilevel converter â€based highâ€voltage direct current transmission systems. IET Generation, Transmission and Distribution, 2016, 10, 2764-2770.	2.5	62
14	A ZVS Grid-Connected Three-Phase Inverter. IEEE Transactions on Power Electronics, 2012, 27, 3595-3604.	7.9	60
15	Novel High-Efficiency Three-Level Stacked-Neutral-Point-Clamped Grid-Tied Inverter. IEEE Transactions on Industrial Electronics, 2013, 60, 3766-3774.	7.9	54
16	Review of modular multilevel converter based multi-terminal HVDC systems for offshore wind power transmission. Renewable and Sustainable Energy Reviews, 2016, 61, 572-586.	16.4	54
17	A Novel Power-Voltage Control Strategy for the Grid-Tied Inverter to Raise the Rated Power Injection Level in a Weak Grid. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2018, 6, 219-232.	5.4	52
18	Coordinated Control of Parallel DR-HVDC and MMC-HVDC Systems for Offshore Wind Energy Transmission. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8, 2572-2582.	5.4	52

#	Article	IF	CITATIONS
19	Active Control of DC Fault Currents in DC Solid-State Transformers During Ride-Through Operation of Multi-Terminal HVDC Systems. IEEE Transactions on Energy Conversion, 2016, 31, 1336-1346.	5.2	46
20	Offshore AC Fault Protection of Diode Rectifier Unit-Based HVdc System for Wind Energy Transmission. IEEE Transactions on Industrial Electronics, 2019, 66, 5289-5299.	7.9	45
21	A Zero Voltage Switching SVM (ZVS–SVM) Controlled Three-Phase Boost Rectifier. IEEE Transactions on Power Electronics, 2007, 22, 978-986.	7.9	44
22	An Improved DC Fault Protection Algorithm for MMC HVDC Grids Based on Modal-Domain Analysis. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8, 4086-4099.	5.4	40
23	Enhanced Flat-Topped Modulation for MMC Control in HVDC Transmission Systems. IEEE Transactions on Power Delivery, 2017, 32, 152-161.	4.3	38
24	A Novel DC-Side Zero-Voltage Switching (ZVS) Three-Phase Boost PWM Rectifier Controlled by an Improved SVM Method. IEEE Transactions on Power Electronics, 2012, 27, 4391-4408.	7.9	37
25	Control of Offshore MMC During Asymmetric Offshore AC Faults for Wind Power Transmission. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8, 1074-1083.	5.4	34
26	Review of technologies for DC grids – power conversion, flow control and protection. IET Power Electronics, 2019, 12, 1851-1867.	2.1	33
27	A Novel Switched-Capacitor Converter With High Voltage Gain. IEEE Access, 2019, 7, 107831-107844.	4.2	31
28	Review of MVDC Applications, Technologies, and Future Prospects. Energies, 2021, 14, 8294.	3.1	26
29	Enhanced AC voltage and frequency control of offshore MMC station for wind farm connection. IET Renewable Power Generation, 2018, 12, 1771-1777.	3.1	24
30	Differentiation Power Control of Modules in Second-Life Battery Energy Storage System Based on Cascaded H-Bridge Converter. IEEE Transactions on Power Electronics, 2020, 35, 6609-6624.	7.9	24
31	A Review of Power Conversion Systems and Design Schemes of High-Capacity Battery Energy Storage Systems. IEEE Access, 2022, 10, 52030-52042.	4.2	22
32	A novel MMC control scheme to increase the DC voltage in HVDC transmission systems. Electric Power Systems Research, 2017, 143, 544-553.	3.6	20
33	Analysis and Control of Offshore Wind Farms Connected With Diode Rectifier-Based HVDC System. IEEE Transactions on Power Delivery, 2020, 35, 2049-2059.	4.3	20
34	A Unidirectional Hybrid HVDC Transmission System Based on Diode Rectifier and Full-Bridge MMC. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 6974-6984.	5.4	20
35	Accelerated switching function model of hybrid MMCs for HVDC system simulation. IET Power Electronics, 2017, 10, 2199-2207.	2.1	20
36	A New Hybrid Modular Multilevel Converter With Integrated Energy Storage. IEEE Access, 2019, 7, 172981-172993.	4.2	18

#	Article	IF	CITATIONS
37	Control of Parallel Multirectifiers for a Direct-Drive Permanent-Magnet Wind Power Generator. IEEE Transactions on Industry Applications, 2013, 49, 1687-1696.	4.9	15
38	Review of DC fault protection for HVDC grids. Wiley Interdisciplinary Reviews: Energy and Environment, 2018, 7, e278.	4.1	15
39	Hierarchical control of offshore wind farm connected by parallel diodeâ€rectifierâ€based HVDC and HVAC links. IET Renewable Power Generation, 2019, 13, 1493-1502.	3.1	15
40	An Integrated Control and Protection Scheme Based on FBSM-MMC Active Current Limiting Strategy for DC Distribution Network. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 2632-2642.	5.4	15
41	Impedance Modelling and Stability Analysis of Diode-Rectifier based HVDC Connected Offshore Wind Farms. IEEE Transactions on Power Delivery, 2022, 37, 591-602.	4.3	15
42	Hybrid modular multilevel converter based multiâ€ŧerminal DC/DC converter with minimised fullâ€bridge submodules ratio considering DC fault isolation. IET Renewable Power Generation, 2016, 10, 1587-1596.	3.1	14
43	Enhanced AC voltage and frequency control on offshore MMC station for wind farm. Journal of Engineering, 2017, 2017, 1264-1268.	1.1	14
44	DC Fault Protection of Diode Rectifier Unit Based HVDC System Connecting Offshore Wind Farms. , 2018, , .		13
45	A Low Conduction Loss Modular Multilevel Converter Topology With DC Fault Blocking Capability and Reduced Capacitance. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67, 1299-1303.	3.0	13
46	A Hybrid Modular Multilevel Converter With Reduced Full-Bridge Submodules. IEEE Transactions on Power Delivery, 2020, 35, 1876-1885.	4.3	13
47	Enhanced Control of Offshore Wind Farms Connected to MTDC Network Using Partially Selective DC Fault Protection. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 2926-2935.	5.4	13
48	Passive Integration Using FMLF Technique for Integrated Boost Resonant Converters. IEEE Transactions on Industrial Electronics, 2020, 67, 3756-3766.	7.9	12
49	Optimal short ircuit current control of the gridâ€forming converter during grid fault condition. IET Renewable Power Generation, 2021, 15, 2185-2194.	3.1	11
50	A family of novel zero-voltage switching three-phase PWM converters topology for distributed generation. , 2011, , .		10
51	DC fault protection structures at a DCâ€link node in a radial multiâ€ŧerminal highâ€voltage direct current system. IET Renewable Power Generation, 2016, 10, 744-751.	3.1	10
52	Parallel operation of diodeâ€rectifier based HVDC link and HVAC link for offshore wind power transmission. Journal of Engineering, 2019, 2019, 4713-4717.	1.1	10
53	A Wide Output Voltage Range LLC Resonant Converter Based on Topology Reconfiguration Method. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10, 969-983.	5.4	10
54	Submodule configuration of HVDCâ€DC autotransformer considering DC fault. IET Power Electronics, 2016, 9, 2776-2785.	2.1	8

#	Article	IF	CITATIONS
55	Modelling and control of modular multi-level converter based HVDC systems using symmetrical components. , 2015, , .		6
56	A series HVDC power tap using modular multilevel converters. , 2016, , .		6
57	A novel and reliable modulation strategy for active neutral-point clamped five-level converter. , 2017, ,		6
58	An Optimization Method for Minimizing the Submodule Capacitance of Modular Multilevel Converter. , 2018, , .		6
59	An Interleaved Active Neutral-Point Clamped Nine-Level Converter. , 2020, , .		5
60	Reverse Blocking Devices Based Three-Level MMC Sub-Module Topology With DC Side Fault Blocking Capability. IEEE Transactions on Power Delivery, 2022, 37, 1866-1875.	4.3	5
61	Modified <i>LLC</i> Resonant Converter With <i>LC</i> Antiresonant Circuit in Parallel Branch for Wide Voltage Range Application. IEEE Transactions on Power Electronics, 2022, 37, 7387-7399.	7.9	5
62	Approach to Inertial Compensation of HVdc Offshore Wind Farms by MMC With Ultracapacitor Energy Storage Integration. IEEE Transactions on Industrial Electronics, 2022, 69, 12988-12998.	7.9	5
63	ZVZCS three-level DC-DC converter using passive clamping circuit. , 2008, , .		4
64	A ZVS DC-DC converter using non-dissipative snubber circuit. , 2008, , .		4
65	Energy transfer analysis for capacitor voltage balancing of modular multilevel converters. , 2016, , .		4
66	A new hybrid MMC with integrated energy storage. , 2017, , .		4
67	Compact mixed cell modular multilevel converter. , 2018, , .		4
68	A Low Conduction Loss Modular Multilevel Converter Sub-Module Topology with DC Fault blocking Capability. , 2020, , .		4
69	An Adaptive Reclosing Scheme Based on Phase Characteristics for MMC-HVDC Systems. IEEE Transactions on Power Delivery, 2022, 37, 2986-2996.	4.3	4
70	Application of interphase inductors for parallel generator-side converters in direct-drive wind turbine system. , 2012, , .		3
71	AC Voltage Control of DC/DC Converters Based on Modular Multilevel Converters in Multi-Terminal High-Voltage Direct Current Transmission Systems. Energies, 2016, 9, 1064.	3.1	3
72	Protection and postâ€fault recovery of large HVDC networks using partitioning and fastâ€acting DC breakers at strategic locations. Journal of Engineering, 2019, 2019, 2736-2742.	1.1	3

#	Article	IF	CITATIONS
73	Influence of Parasitic Parameters on DC–DC Converters and Their Method of Suppression in High Frequency Link 35 kV PV Systems. Energies, 2019, 12, 3743.	3.1	3
74	Circulating Current Suppression Scheme for Interleaved Active Neutral Point Clamped Nine-Level Inverter. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11, 3669-3679.	5.4	3
75	Study on Half-Bridge Voltage Balancing Circuit with Two Driving Methods. Journal of Electrical Engineering and Technology, 2021, 16, 1505-1516.	2.0	2
76	Control strategy of series DC wind farm based on Z-source DC/DC converter. , 2012, , .		1
77	A novel modulation strategy for isolated modular multilevel DC/DC converter's sub-module dc voltage oscillation damping. , 2016, , .		1
78	Control of a cascaded STATCOM with battery energy storage system under unbalanced and distorted grid voltage conditions. Journal of Renewable and Sustainable Energy, 2017, 9, .	2.0	1
79	Operation of a Novel Hybrid Modular Multilevel Energy Storage Converter under Fault Condition. , 2019, , .		1
80	Energy-Based Virtual Damping Control of FB-MMCs for HVDC Grid. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 7320-7328.	5.4	1
81	Simplified Modeling and Control of a GaN Switched-Capacitor Converters With Phase Shift Modulation. IEEE Transactions on Power Electronics, 2021, 36, 14550-14566.	7.9	1
82	An Analog-Device-Based Five-Domain Control Method and Distributed System Configuration for High-Power Spacecraft Power Systems. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10, 5332-5344.	5.4	1
83	Hybrid modular multilevel converter with reduced three-level cells in HVDC transmission system. , 2016, , .		0
84	Active Control of DC Fault Currents in DC Solid-State Transformers during Ride-Through Operation of Multi-Terminal HVDC Systems. , 2018, , .		0
85	Interoperability assessment of MMC and DRU connected offshore windfarms in meshed multi-terminal dc grids. , 2019, , .		0
86	A Novel Switched-Capacitor Converter with Phase Shift Modulation. , 2019, , .		0
87	RB-IGBT Based MMC Topologies with DC Fault Blocking Capability. , 2020, , .		0
88	A Novel Current Self-Balancing Method for High-Gain and High-Frequency Converter. IEEE Transactions on Industrial Electronics, 2023, 70, 4922-4930.	7.9	0