
## **Christophe Paupy**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5804291/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Using haematophagous fly blood meals to study the diversity of bloodâ€borne pathogens infecting wild mammals. Molecular Ecology Resources, 2022, 22, 2915-2927.                                                                                         | 2.2 | 4         |
| 2  | Population genomics in the arboviral vector <i>Aedes aegypti</i> reveals the genomic architecture and evolution of endogenous viral elements. Molecular Ecology, 2021, 30, 1594-1611.                                                                   | 2.0 | 37        |
| 3  | Experimental infections with Zika virus strains reveal high vector competence of Aedes albopictus and<br>Aedes aegypti populations from Gabon (Central Africa) for the African virus lineage. Emerging<br>Microbes and Infections, 2021, 10, 1244-1253. | 3.0 | 1         |
| 4  | Enhanced Zika virus susceptibility of globally invasive <i>Aedes aegypti</i> populations. Science, 2020, 370, 991-996.                                                                                                                                  | 6.0 | 61        |
| 5  | The COVID-19 pandemic should not jeopardize dengue control. PLoS Neglected Tropical Diseases, 2020,<br>14, e0008716.                                                                                                                                    | 1.3 | 28        |
| 6  | Exome-wide association study reveals largely distinct gene sets underlying specific resistance to dengue virus types 1 and 3 in Aedes aegypti. PLoS Genetics, 2020, 16, e1008794.                                                                       | 1.5 | 13        |
| 7  | Microbial community structure reveals instability of nutritional symbiosis during the evolutionary radiation of <i>Amblyomma</i> ticks. Molecular Ecology, 2020, 29, 1016-1029.                                                                         | 2.0 | 48        |
| 8  | A Systematic Review: Is Aedes albopictus an Efficient Bridge Vector for Zoonotic Arboviruses?.<br>Pathogens, 2020, 9, 266.                                                                                                                              | 1.2 | 62        |
| 9  | Survey on Non-Human Primates and Mosquitoes Does not Provide Evidences of Spillover/Spillback<br>between the Urban and Sylvatic Cycles of Yellow Fever and Zika Viruses Following Severe Outbreaks<br>in Southeast Brazil. Viruses, 2020, 12, 364.      | 1.5 | 19        |
| 10 | A new species in the major malaria vector complex sheds light on reticulated species evolution.<br>Scientific Reports, 2019, 9, 14753.                                                                                                                  | 1.6 | 56        |
| 11 | A New High-Throughput Tool to Screen Mosquito-Borne Viruses in Zika Virus Endemic/Epidemic Areas.<br>Viruses, 2019, 11, 904.                                                                                                                            | 1.5 | 16        |
| 12 | Natural <i>Wolbachia</i> infections are common in the major malaria vectors in Central Africa.<br>Evolutionary Applications, 2019, 12, 1583-1594.                                                                                                       | 1.5 | 36        |
| 13 | <i>Haemagogus leucocelaenus</i> and <i>Haemagogus janthinomys</i> are the primary vectors in the major yellow fever outbreak in Brazil, 2016–2018. Emerging Microbes and Infections, 2019, 8, 218-231.                                                  | 3.0 | 112       |
| 14 | Potential of <i>Aedes albopictus</i> as a bridge vector for enzootic pathogens at the urban-forest interface in Brazil. Emerging Microbes and Infections, 2018, 7, 1-8.                                                                                 | 3.0 | 47        |
| 15 | Cenomes of all known members of a Plasmodium subgenus reveal paths to virulent human malaria.<br>Nature Microbiology, 2018, 3, 687-697.                                                                                                                 | 5.9 | 129       |
| 16 | What Does the Future Hold for Yellow Fever Virus? (I). Genes, 2018, 9, 291.                                                                                                                                                                             | 1.0 | 34        |
| 17 | Population structure of a vector of human diseases: <i>Aedes aegypti</i> in its ancestral range, Africa.<br>Ecology and Evolution, 2018, 8, 7835-7848.                                                                                                  | 0.8 | 57        |
| 18 | Diverse laboratory colonies of Aedes aegypti harbor the same adult midgut bacterial microbiome.<br>Parasites and Vectors, 2018, 11, 207.                                                                                                                | 1.0 | 63        |

CHRISTOPHE PAUPY

| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | What Does the Future Hold for Yellow Fever Virus? (II). Genes, 2018, 9, 425.                                                                                                                                                                | 1.0 | 32        |
| 20 | Plasmodium vivax-like genome sequences shed new insights into Plasmodium vivax biology and evolution. PLoS Biology, 2018, 16, e2006035.                                                                                                     | 2.6 | 32        |
| 21 | Diversity and role of cave-dwelling hematophagous insects in pathogen transmission in the Afrotropical region. Emerging Microbes and Infections, 2017, 6, 1-6.                                                                              | 3.0 | 11        |
| 22 | Potential of Aedes aegypti and Aedes albopictus populations in the Central African Republic to transmit enzootic chikungunya virus strains. Parasites and Vectors, 2017, 10, 164.                                                           | 1.0 | 29        |
| 23 | Exploring the diversity of blood-sucking Diptera in caves of Central Africa. Scientific Reports, 2017, 7, 250.                                                                                                                              | 1.6 | 12        |
| 24 | "Show me which parasites you carry and I will tell you what you eatâ€; or how to infer the trophic<br>behavior of hematophagous arthropods feeding on wildlife. Ecology and Evolution, 2017, 7, 7578-7584.                                  | 0.8 | 12        |
| 25 | Carryover effects of larval exposure to different environmental bacteria drive adult trait variation in a mosquito vector. Science Advances, 2017, 3, e1700585.                                                                             | 4.7 | 172       |
| 26 | Chapitre 11. Culicinae (DipteraÂ: Culicidae). , 2017, , 243-294.                                                                                                                                                                            |     | 1         |
| 27 | Tracking zoonotic pathogens using blood-sucking flies as 'flying syringes'. ELife, 2017, 6, .                                                                                                                                               | 2.8 | 35        |
| 28 | A molecular study of the genus Spelaeomyia (Diptera: Phlebotominae) with description of the male of<br>Spelaeomyia moucheti. Parasites and Vectors, 2016, 9, 367.                                                                           | 1.0 | 3         |
| 29 | Susceptibility profile and metabolic mechanisms involved in Aedes aegypti and Aedes albopictus<br>resistant to DDT and deltamethrin in the Central African Republic. Parasites and Vectors, 2016, 9, 599.                                   | 1.0 | 51        |
| 30 | Ape malaria transmission and potential for ape-to-human transfers in Africa. Proceedings of the<br>National Academy of Sciences of the United States of America, 2016, 113, 5329-5334.                                                      | 3.3 | 59        |
| 31 | Bat flies (Diptera: Nycteribiidae and Streblidae) infesting cave-dwelling bats in Gabon: diversity,<br>dynamics and potential role in Polychromophilus melanipherus transmission. Parasites and Vectors,<br>2016, 9, 333.                   | 1.0 | 36        |
| 32 | Global genetic diversity of <i>Aedes aegypti</i> . Molecular Ecology, 2016, 25, 5377-5395.                                                                                                                                                  | 2.0 | 195       |
| 33 | The host specificity of ape malaria parasites can be broken in confined environments. International<br>Journal for Parasitology, 2016, 46, 737-744.                                                                                         | 1.3 | 30        |
| 34 | Trapping the Tiger: Efficacy of the Novel BG-Sentinel 2 With Several Attractants and Carbon Dioxide<br>for Collecting <i>Aedes albopictus</i> (Diptera: Culicidae) in Southern France. Journal of Medical<br>Entomology, 2016, 53, 460-465. | 0.9 | 30        |
| 35 | Haemosporidian Parasites of Antelopes and Other Vertebrates from Gabon, Central Africa. PLoS ONE, 2016, 11, e0148958.                                                                                                                       | 1.1 | 36        |
| 36 | Autochthonous dengue outbreak in Nîmes, South of France, July to September 2015. Eurosurveillance, 2016, 21, .                                                                                                                              | 3.9 | 124       |

| #  | Article                                                                                                                                                                                                                         | IF        | CITATIONS     |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------|
| 37 | Genetic diversity of Plasmodium falciparum isolates from Baka Pygmies and their Bantu neighbours in the north of Gabon. Malaria Journal, 2015, 14, 395.                                                                         | 0.8       | 0             |
| 38 | No Evidence for Ape Plasmodium Infections in Humans in Gabon. PLoS ONE, 2015, 10, e0126933.                                                                                                                                     | 1.1       | 27            |
| 39 | Diversity of malaria parasites in great apes in Gabon. Malaria Journal, 2015, 14, 111.                                                                                                                                          | 0.8       | 42            |
| 40 | Invasion of Aedes albopictus (Diptera: Culicidae) into central Africa: what consequences for emerging diseases?. Parasites and Vectors, 2015, 8, 191.                                                                           | 1.0       | 72            |
| 41 | Habitat segregation and ecological character displacement in cryptic African malaria mosquitoes.<br>Evolutionary Applications, 2015, 8, 326-345.                                                                                | 1.5       | 75            |
| 42 | Widespread evidence for interspecific mating between Aedes aegypti and Aedes albopictus (Diptera:) Tj ETQq0 C                                                                                                                   | 0 rgBT /O | verlock 10 Tr |
| 43 | Autochthonous Chikungunya Transmission and Extreme Climate Events in Southern France. PLoS<br>Neglected Tropical Diseases, 2015, 9, e0003854.                                                                                   | 1.3       | 59            |
| 44 | Identification of an Unclassified Paramyxovirus in Coleura afra: A Potential Case of Host Specificity.<br>PLoS ONE, 2014, 9, e115588.                                                                                           | 1.1       | 8             |
| 45 | Zika Virus in Gabon (Central Africa) – 2007: A New Threat from Aedes albopictus?. PLoS Neglected<br>Tropical Diseases, 2014, 8, e2681.                                                                                          | 1.3       | 558           |
| 46 | Evidence of Dengue Virus Transmission and Factors Associated with the Presence of Anti-Dengue Virus<br>Antibodies in Humans in Three Major Towns in Cameroon. PLoS Neglected Tropical Diseases, 2014, 8,<br>e2950.              | 1.3       | 50            |
| 47 | Origin, acquisition and diversification of heritable bacterial endosymbionts in louse flies and bat<br>flies. Molecular Ecology, 2014, 23, 2105-2117.                                                                           | 2.0       | 38            |
| 48 | Description of Anopheles gabonensis, a new species potentially involved in rodent malaria<br>transmission in Gabon, Central Africa. Infection, Genetics and Evolution, 2014, 28, 628-634.                                       | 1.0       | 11            |
| 49 | Diversity, host switching and evolution of <i>Plasmodium vivax</i> infecting African great apes.<br>Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8123-8128.                      | 3.3       | 82            |
| 50 | First Evidence of Simultaneous Circulation of Three Different Dengue Virus Serotypes in Africa. PLoS<br>ONE, 2013, 8, e78030.                                                                                                   | 1.1       | 46            |
| 51 | Temporal Patterns of Abundance of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) and<br>Mitochondrial DNA Analysis of Ae. albopictus in the Central African Republic. PLoS Neglected Tropical<br>Diseases 2013 7 e2590 | 1.3       | 79            |

| 52 | Insecticide-Driven Patterns of Genetic Variation in the Dengue Vector Aedes aegypti in Martinique<br>Island. PLoS ONE, 2013, 8, e77857.                  | 1.1 | 24 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 53 | Phlebotomus (Legeromyia) multihamatus subg. nov., sp. nov. from Gabon (Diptera: Psychodidae).<br>Memorias Do Instituto Oswaldo Cruz, 2013, 108, 845-849. | 0.8 | 8  |

<sup>54</sup>Anopheles moucheti and Anopheles vinckei Are Candidate Vectors of Ape Plasmodium Parasites,<br/>Including Plasmodium praefalciparum in Gabon. PLoS ONE, 2013, 8, e57294.1.140

CHRISTOPHE PAUPY

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Clinical Forms of Chikungunya in Gabon, 2010. PLoS Neglected Tropical Diseases, 2012, 6, e1517.                                                                                                                                  | 1.3 | 56        |
| 56 | A Chikungunya Outbreak Associated with the Vector <i>Aedes albopictus</i> in Remote Villages of Gabon. Vector-Borne and Zoonotic Diseases, 2012, 12, 167-169.                                                                    | 0.6 | 82        |
| 57 | Recent Introduction and Rapid Dissemination of Chikungunya Virus and Dengue Virus Serotype 2<br>Associated With Human and Mosquito Coinfections in Gabon, Central Africa. Clinical Infectious<br>Diseases, 2012, 55, e45-e53.    | 2.9 | 145       |
| 58 | Entomological profile of yellow fever epidemics in the Central African Republic, 2006–2010. Parasites and Vectors, 2012, 5, 175.                                                                                                 | 1.0 | 19        |
| 59 | Notes on the blood-feeding behavior of Aedes albopictus (Diptera: Culicidae) in Cameroon. Parasites and Vectors, 2012, 5, 57.                                                                                                    | 1.0 | 98        |
| 60 | Genetic structure and phylogeography of Aedes aegypti, the dengue and yellow-fever mosquito vector in Bolivia. Infection, Genetics and Evolution, 2012, 12, 1260-1269.                                                           | 1.0 | 64        |
| 61 | Genetic Structure of the Tiger Mosquito, Aedes albopictus, in Cameroon (Central Africa). PLoS ONE, 2011, 6, e20257.                                                                                                              | 1.1 | 72        |
| 62 | The invaders: Phylogeography of dengue and chikungunya viruses Aedes vectors, on the South West islands of the Indian Ocean. Infection, Genetics and Evolution, 2011, 11, 1769-1781.                                             | 1.0 | 66        |
| 63 | Insecticide susceptibility of Aedes aegypti and Aedes albopictus in Central Africa. Parasites and Vectors, 2011, 4, 79.                                                                                                          | 1.0 | 114       |
| 64 | Worldwide patterns of genetic differentiation imply multiple â€~domestications' of <i>Aedes aegypti</i> ,<br>a major vector of human diseases. Proceedings of the Royal Society B: Biological Sciences, 2011, 278,<br>2446-2454. | 1.2 | 213       |
| 65 | Chikungunya outbreak in a rural area of Western Cameroon in 2006: A retrospective serological and entomological survey. BMC Research Notes, 2010, 3, 128.                                                                        | 0.6 | 65        |
| 66 | Morphological and genetic variability within Aedes aegypti in Niakhar, Senegal. Infection, Genetics and<br>Evolution, 2010, 10, 473-480.                                                                                         | 1.0 | 40        |
| 67 | Rift Valley Fever Virus Seroprevalence in Human Rural Populations of Gabon. PLoS Neglected Tropical<br>Diseases, 2010, 4, e763.                                                                                                  | 1.3 | 45        |
| 68 | Comparative Role of <i>Aedes albopictus</i> and <i>Aedes aegypti</i> in the Emergence of Dengue and Chikungunya in Central Africa. Vector-Borne and Zoonotic Diseases, 2010, 10, 259-266.                                        | 0.6 | 241       |
| 69 | Geographic and ecological distribution of the dengue and chikungunya virus vectors Aedes aegypti<br>and Aedes albopictus in three major Cameroonian towns. Medical and Veterinary Entomology, 2010, 24,<br>132-141.              | 0.7 | 74        |
| 70 | Aedes albopictus, an arbovirus vector: From the darkness to the light. Microbes and Infection, 2009, 11, 1177-1185.                                                                                                              | 1.0 | 715       |
| 71 | Geographic Distribution and Developmental Sites of <i>Aedes albopictus</i> (Diptera: Culicidae)<br>During a Chikungunya Epidemic Event. Vector-Borne and Zoonotic Diseases, 2008, 8, 25-34.                                      | 0.6 | 154       |

Gene Flow Between Domestic and Sylvan Populations of <1&gt;Aedes aegypti&lt;/1&gt; (Diptera:) Tj ETQq0 0 0 rgBT\_/Overlock 10 Tf 50

Christophe Paupy

| #  | Article                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Gene Flow Between Domestic and Sylvan Populations of Aedes aegypti (Diptera: Culicidae) in North<br>Cameroon. Journal of Medical Entomology, 2008, 45, 391-400.                                                                                           | 0.9 | 34        |
| 74 | Chikungunya Virus, Cameroon, 2006. Emerging Infectious Diseases, 2007, 13, 768-771.                                                                                                                                                                       | 2.0 | 121       |
| 75 | Aedes albopictus as an epidemic vector of chikungunya virus: another emerging problem?. Lancet<br>Infectious Diseases, The, 2006, 6, 463-464.                                                                                                             | 4.6 | 213       |
| 76 | Factors influencing the population structure of Aedes aegypti from the main cities in Cambodia.<br>Heredity, 2005, 95, 144-147.                                                                                                                           | 1.2 | 26        |
| 77 | Comparisons of Amplified Fragment Length Polymorphism (AFLP), Microsatellite, and Isoenzyme<br>Markers: Population Genetics of <i>Aedes aegypti</i> (Diptera: Culicidae) from Phnom Penh (Cambodia).<br>Journal of Medical Entomology, 2004, 41, 664-671. | 0.9 | 19        |
| 78 | INFLUENCE OF BREEDING SITES FEATURES ON GENETIC DIFFERENTIATION OF AEDES AEGYPTI POPULATIONS<br>ANALYZED ON A LOCAL SCALE IN PHNOM PENH MUNICIPALITY OF CAMBODIA. American Journal of Tropical<br>Medicine and Hygiene, 2004, 71, 73-81.                  | 0.6 | 32        |
| 79 | Influence of breeding sites features on genetic differentiation of Aedes aegypti populations analyzed<br>on a local scale in Phnom Penh Municipality of Cambodia. American Journal of Tropical Medicine and<br>Hygiene, 2004, 71, 73-81.                  | 0.6 | 12        |
| 80 | Variation over space and time of Aedes aegypti in Phnom Penh (Cambodia): genetic structure and oral susceptibility to a dengue virus. Genetical Research, 2003, 82, 171-182.                                                                              | 0.3 | 32        |
| 81 | Population structure of Aedes albopictus from La Réunion Island (Indian Ocean) with respect to susceptibility to a dengue virus. Heredity, 2001, 87, 273-283.                                                                                             | 1.2 | 59        |
| 82 | Aedes aegypti in Tahiti and Moorea (French Polynesia): isoenzyme differentiation in the mosquito<br>population according to human population density American Journal of Tropical Medicine and<br>Hygiene, 2000, 62, 217-224.                             | 0.6 | 48        |
| 83 | Metabarcoding: A Powerful Yet Still Underestimated Approach for the Comprehensive Study of Vector-Borne Pathogen Transmission Cycles and Their Dynamics. , 0, , .                                                                                         |     | 7         |