Catarina Gonçalves

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5804046/publications.pdf

Version: 2024-02-01

471509 552781 27 926 17 26 h-index g-index citations papers 28 28 28 1348 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Low energy nanoemulsions as carriers of thyme and lemon balm essential oils. LWT - Food Science and Technology, 2022, 154, 112748.	5.2	10
2	Safety and fate of nanomaterials in food: The role of in vitro tests. Trends in Food Science and Technology, 2021, 109, 593-607.	15.1	26
3	All-cellulose nanocomposite films based on bacterial cellulose nanofibrils and nanocrystals. Food Packaging and Shelf Life, 2021, 29, 100715.	7.5	21
4	Green synthesis of lignin nano- and micro-particles: Physicochemical characterization, bioactive properties and cytotoxicity assessment. International Journal of Biological Macromolecules, 2020, 163, 1798-1809.	7. 5	46
5	Bio-Based Nanoparticles as a Carrier of \hat{l}^2 -Carotene: Production, Characterisation and In Vitro Gastrointestinal Digestion. Molecules, 2020, 25, 4497.	3.8	24
6	Safety and potential functionality of nanoparticles loaded with a trypsin inhibitor isolated from tamarind seeds. Future Foods, 2020, 1-2, 100001.	5.4	9
7	Bacterial cellulose/cashew gum films as probiotic carriers. LWT - Food Science and Technology, 2020, 130, 109699.	5.2	34
8	Moringa oleiferaâ€"Storage Stability, In Vitro-Simulated Digestion and Cytotoxicity Assessment of Microencapsulated Extract. Processes, 2020, 8, 770.	2.8	6
9	<p>In Vitro Intestinal Uptake And Permeability Of Fluorescently-Labelled Hyaluronic Acid Nanogels</p> . International Journal of Nanomedicine, 2019, Volume 14, 9077-9088.	6.7	18
10	Tamarind Trypsin Inhibitor in Chitosan–Whey Protein Nanoparticles Reduces Fasting Blood Glucose Levels without Compromising Insulinemia: A Preclinical Study. Nutrients, 2019, 11, 2770.	4.1	25
11	Cellulose nanocrystals from grape pomace: Production, properties and cytotoxicity assessment. Carbohydrate Polymers, 2018, 192, 327-336.	10.2	108
12	Bacterial cellulose nanofiber-based films incorporating gelatin hydrolysate from tilapia skin: production, characterization and cytotoxicity assessment. Cellulose, 2018, 25, 6011-6029.	4.9	16
13	Potential of mannan or dextrin nanogels as vaccine carrier/adjuvant systems. Journal of Bioactive and Compatible Polymers, 2016, 31, 453-466.	2.1	4
14	Dextrin., 2016,, 2634-2649.		7
15	Dextrin-Based Nanomagnetogel: In Vivo Biodistribution and Stability. Bioconjugate Chemistry, 2015, 26, 699-706.	3.6	9
16	A Novel Crosslinked Hyaluronic Acid Nanogel for Drug Delivery. Macromolecular Bioscience, 2014, 14, 1556-1568.	4.1	44
17	New dextrin nanomagnetogels as contrast agents for magnetic resonance imaging. Journal of Materials Chemistry B, 2013, 1, 5853.	5.8	17
18	Self-Assembled Dextrin Nanogel as Curcumin Delivery System. Journal of Biomaterials and Nanobiotechnology, 2012, 03, 178-184.	0.5	35

#	Article	IF	CITATIONS
19	Self-Assembled Hydrogel Nanoparticles for Drug Delivery Applications. Materials, 2010, 3, 1420-1460.	2.9	152
20	Biological activity of heterologous murine interleukin-10 and preliminary studies on the use of a dextrin nanogel as a delivery system. International Journal of Pharmaceutics, 2010, 400, 234-242.	5.2	29
21	Dextrin nanoparticles: Studies on the interaction with murine macrophages and blood clearance. Colloids and Surfaces B: Biointerfaces, 2010, 75, 483-489.	5.0	47
22	Studies on the biodistribution of dextrin nanoparticles. Nanotechnology, 2010, 21, 295103.	2.6	9
23	Characterization of dextrin hydrogels by FTIR spectroscopy and solid state NMR spectroscopy. European Polymer Journal, 2008, 44, 2318-2329.	5.4	37
24	Self-aggregation of hydrophobically modified dextrin and their interaction with surfactant. Thermochimica Acta, 2008, 467, 54-62.	2.7	20
25	Characterization of the self-assembly process of hydrophobically modified dextrin. European Polymer Journal, 2008, 44, 3529-3534.	5.4	33
26	Self-Assembled Nanoparticles of Dextrin Substituted with Hexadecanethiol. Biomacromolecules, 2007, 8, 392-398.	5.4	61
27	Production and characterization of a new dextrin based hydrogel. European Polymer Journal, 2007, 43, 3050-3059.	5.4	79