
Mariel C Isidra-Arellano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5803953/publications.pdf

Version: 2024-02-01

#	Article	lF	CITATIONS
1	The Phosphate Starvation Response System: Its Role in the Regulation of Plant–Microbe Interactions. Plant and Cell Physiology, 2021, 62, 392-400.	3.1	21
2	Control of the Rhizobia Nitrogen-Fixing Symbiosis by Common Bean MADS-Domain/AGL Transcription Factors. Frontiers in Plant Science, 2021, 12, 679463.	3.6	7
3	Inhibition of legume nodulation by Pi deficiency is dependent on the autoregulation of nodulation (AON) pathway. Plant Journal, 2020, 103, 1125-1139.	5.7	33
4	A Novel OmpR-Type Response Regulator Controls Multiple Stages of the Rhizobium etli – Phaseolus vulgaris N2-Fixing Symbiosis. Frontiers in Microbiology, 2020, 11, 615775.	3.5	4
5	Early Molecular Dialogue Between Legumes and Rhizobia: Why Are They So Important?. Results and Problems in Cell Differentiation, 2020, 69, 409-419.	0.7	0
6	Argonaute Proteins: Why Are They So Important for the Legume–Rhizobia Symbiosis?. Frontiers in Plant Science, 2019, 10, 1177.	3.6	2
7	A Novel Positive Regulator of the Early Stages of Root Nodule Symbiosis Identified by Phosphoproteomics. Plant and Cell Physiology, 2019, 60, 575-586.	3.1	10
8	Phosphate Deficiency Negatively Affects Early Steps of the Symbiosis between Common Bean and Rhizobia. Genes, 2018, 9, 498.	2.4	25
9	Soybean Roots Grown under Heat Stress Show Global Changes in Their Transcriptional and Proteomic Profiles. Frontiers in Plant Science, 2016, 7, 517.	3.6	56
10	Common Bean: A Legume Model on the Rise for Unraveling Responses and Adaptations to Iron, Zinc, and Phosphate Deficiencies. Frontiers in Plant Science, 2016, 7, 600.	3.6	77