Donghui Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5803849/publications.pdf

Version: 2024-02-01

172386 265120 2,422 42 96 29 citations h-index g-index papers 97 97 97 2512 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Enantioselective degradation of prothioconazole in soil and the impacts on the enzymes and microbial community. Science of the Total Environment, 2022, 824, 153658.	3.9	16
2	Effects of three surfactants on the degradation and environmental risk of metolachlor in aquatic environment. Chemosphere, 2022, 300, 134295.	4.2	10
3	Enantioselective characteristics, bioaccumulation and toxicological effects of chlordane-related compounds in laying hens. Chemosphere, 2022, 300, 134486.	4.2	4
4	Co-exposure of Monensin Increased the Risks of Atrazine to Earthworms. Environmental Science & Earthworms. Environmental Earthworms. Earthworms. Environmental Earthworms. Earthwo	4.6	19
5	Coexisting antibiotic changes the persistence and metabolic profile of atrazine in the environment. Chemosphere, 2021, 269, 129333.	4.2	18
6	Effects of antibiotic norfloxacin on the degradation and enantioselectivity of the herbicides in aquatic environment. Ecotoxicology and Environmental Safety, 2021, 208, 111717.	2.9	32
7	Effects of Cd2+ and Pb2+ on enantioselective degradation behavior of \hat{l} ±-cypermethrin in soils and their combined effect on activities of soil enzymes. Environmental Science and Pollution Research, 2021, 28, 47099-47106.	2.7	5
8	Tyrosinase coupled with boron-doped carbon nanodots for fluorometric determination of dithiocarbamate fungicide ziram. Microchemical Journal, 2021, 166, 106241.	2.3	4
9	Assessment of toxicity and environmental behavior of chiral ethiprole and its metabolites using zebrafish model. Journal of Hazardous Materials, 2021, 414, 125492.	6.5	21
10	Toxicity and fate of chiral insecticide pyriproxyfen and its metabolites in zebrafish (Danio rerio). Environmental Pollution, 2021, 280, 116894.	3.7	17
11	Accumulation, distribution and removal of triazine pesticides by Eichhornia crassipes in water-sediment microcosm. Ecotoxicology and Environmental Safety, 2021, 219, 112236.	2.9	18
12	Occurrence and migration of phthalates in adhesive materials to fruits and vegetables. Journal of Hazardous Materials, 2021, 418, 126277.	6.5	16
13	A Simple Method for the Determination of Pharmaceutical and Personal Care Products in Fish Tissue Based on Matrix Solid-Phase Dispersion. Journal of Agricultural and Food Chemistry, 2021, 69, 15738-15745.	2.4	4
14	New insight into the mechanism of POP-induced obesity: Evidence from DDE-altered microbiota. Chemosphere, 2020, 244, 125123.	4.2	29
15	Toxicity risk assessment of pyriproxyfen and metabolites in the rat liver: A vitro study. Journal of Hazardous Materials, 2020, 389, 121835.	6.5	21
16	Gut microbiome alterations induced by tributyltin exposure are associated with increased body weight, impaired glucose and insulin homeostasis and endocrine disruption in mice. Environmental Pollution, 2020, 266, 115276.	3.7	13
17	Catechol Dyes–Tyrosinase System for Colorimetric Determination and Discrimination of Dithiocarbamate Pesticides. Journal of Agricultural and Food Chemistry, 2020, 68, 9252-9259.	2.4	14
18	Enantiomeric separation of malathion and malaoxon and the chiral residue analysis in food and environmental matrix. Chirality, 2020, 32, 1053-1061.	1.3	14

#	Article	IF	CITATIONS
19	A full evaluation of chiral phenylpyrazole pesticide flufiprole and the metabolites to non-target organism in paddy field. Environmental Pollution, 2020, 264, 114808.	3.7	30
20	The influence of polyethylene microplastics on pesticide residue and degradation in the aquatic environment. Journal of Hazardous Materials, 2020, 394, 122517.	6.5	83
21	Biodegradation of Chiral Flufiprole in <i>Chlorella pyrenoidosa</i> : Kinetics, Transformation Products, and Toxicity Evaluation. Journal of Agricultural and Food Chemistry, 2020, 68, 1966-1973.	2.4	14
22	Fluorometric atrazine assay based on the use of nitrogen-doped graphene quantum dots and on inhibition of the activity of tyrosinase. Mikrochimica Acta, 2019, 186, 527.	2.5	11
23	Multifunctional \hat{I}^2 -Cyclodextrin MOF-Derived Porous Carbon as Efficient Herbicides Adsorbent and Potassium Fertilizer. ACS Sustainable Chemistry and Engineering, 2019, 7, 14479-14489.	3.2	64
24	Bioaccumulation and Metabolism of Carbosulfan in Zebrafish (<i>Danio rerio</i>) and the Toxic Effects of Its Metabolites. Journal of Agricultural and Food Chemistry, 2019, 67, 12348-12356.	2.4	36
25	The influence of oxytetracycline on the degradation and enantioselectivity of the chiral pesticide beta-cypermethrin in soil. Environmental Pollution, 2019, 255, 113215.	3.7	15
26	Enantioselective degradation of the chiral alpha-cypermethrin and detection of its metabolites in five plants. Environmental Science and Pollution Research, 2019, 26, 1558-1564.	2.7	21
27	Pectin reduces environmental pollutant-induced obesity in mice through regulating gut microbiota: A case study of p,p′-DDE. Environment International, 2019, 130, 104861.	4.8	35
28	The biological activities of prothioconazole enantiomers and their toxicity assessment on aquatic organisms. Chirality, 2019, 31, 468-475.	1.3	24
29	Analysis of volatile organic compounds in environmental matrices by nitrogen-assisted headspace solid-phase extraction. New Journal of Chemistry, 2019, 43, 8788-8795.	1.4	1
30	Distribution, metabolism and metabolic disturbances of alpha-cypermethrin in embryo development, chick growth and adult hens. Environmental Pollution, 2019, 249, 390-397.	3.7	15
31	Organophosphorus pesticide chlorpyrifos intake promotes obesity and insulin resistance through impacting gut and gut microbiota. Microbiome, 2019, 7, 19.	4.9	149
32	Tissue Distribution, Accumulation, and Metabolism of Chiral Flufiprole in Loach (<i>Misgurnus) Tj ETQq0 0 0 rgBT</i>	/Qverlock	10 Tf 50 22
33	Magnetic partially carbonized cellulose nanocrystal-based magnetic solid phase extraction for the analysis of triazine and triazole pesticides in water. Mikrochimica Acta, 2019, 186, 825.	2.5	27
34	Enantioselective dissipation of pyriproxyfen in soil under fertilizers use. Ecotoxicology and Environmental Safety, 2019, 167, 404-411.	2.9	7
35	Enantioselective toxic effects and environmental behavior of ethiprole and its metabolites against Chlorella pyrenoidosa. Environmental Pollution, 2019, 244, 757-765.	3.7	33
36	The enantioselective environmental behavior and toxicological effects of pyriproxyfen in soil. Journal of Hazardous Materials, 2019, 365, 97-106.	6.5	28

#	Article	IF	Citations
37	Ultrafast Removal of Cadmium(II) by Green Cyclodextrin Metal–Organicâ€Frameworkâ€Based Nanoporous Carbon: Adsorption Mechanism and Application. Chemistry - an Asian Journal, 2019, 14, 261-268.	1.7	36
38	The effect of antibiotics on the persistence of herbicides in soil under the combined pollution. Chemosphere, 2018, 204, 303-309.	4.2	24
39	Application of a magnetic graphene nanocomposite for organophosphorus pesticide extraction in environmental water samples. Journal of Chromatography A, 2018, 1535, 9-16.	1.8	69
40	Supramolecular fluorescent sensor array for simultaneous qualitative and quantitative analysis of quaternary ammonium herbicides. New Journal of Chemistry, 2018, 42, 17317-17322.	1.4	12
41	Antibiotics may increase triazine herbicide exposure risk via disturbing gut microbiota. Microbiome, 2018, 6, 224.	4.9	43
42	Enantioselective bioaccumulation and metabolism of lactofen in zebrafish Danio rerio and combined effects with its metabolites. Chemosphere, 2018, 213, 443-452.	4.2	17
43	The effect of biochar on the mitigation of the chiral insecticide fipronil and its metabolites burden on loach (Misgurnus.anguillicaudatus). Journal of Hazardous Materials, 2018, 360, 214-222.	6.5	27
44	Effervescence assisted dispersive liquid-liquid microextraction based on cohesive floating organic drop for the determination of herbicides and fungicides in water and grape juice. Food Chemistry, 2018, 245, 653-658.	4.2	31
45	Enantioselective behaviour of the herbicide fluazifop-butyl in vegetables and soil. Food Chemistry, 2017, 221, 1120-1127.	4.2	10
46	Matrix Solid-Phase Dispersion Combined with GC–MS/MS for the Determination of Organochlorine Pesticides and Polychlorinated Biphenyls in Marketed Seafood. Chromatographia, 2017, 80, 813-824.	0.7	8
47	Effects of wastewater irrigation and sewage sludge application on soil residues of chiral fungicide benalaxyl. Environmental Pollution, 2017, 224, 1-6.	3.7	18
48	Approach for Pesticide Residue Analysis for Metabolite Prothioconazole-desthio in Animal Origin Food. Journal of Agricultural and Food Chemistry, 2017, 65, 2481-2487.	2.4	28
49	Enantioselective dissipation of pyriproxyfen in soils and sand. Chirality, 2017, 29, 358-368.	1.3	15
50	Enantioselective accumulation, metabolism and phytoremediation of lactofen by aquatic macrophyte Lemna minor. Ecotoxicology and Environmental Safety, 2017, 143, 186-192.	2.9	27
51	Enantioselective degradation of alpha-cypermethrin and detection of its metabolites in bullfrog () Tj ETQq $1\ 1\ 0.7$	7843]4 rg 2.9	BT JOverlock
52	Stereoselective metabolism of the UV-filter 2-ethylhexyl 4-dimethylaminobenzoate and its metabolites in rabbits in vivo and vitro. RSC Advances, 2017, 7, 16991-16996.	1.7	6
53	Nonoccupational Exposure to Pyrethroids and Risk of Coronary Heart Disease in the Chinese Population. Environmental Science & Eachnology, 2017, 51, 664-670.	4.6	60
54	Deep eutectic solvent-based liquid phase microextraction for the determination of pharmaceuticals and personal care products in fish oil. New Journal of Chemistry, 2017, 41, 15105-15109.	1.4	12

#	Article	IF	Citations
55	Exposure of frogs and tadpoles to chiral herbicide fenoxaprop-ethyl. Chemosphere, 2017, 186, 832-838.	4.2	18
56	Absorption, Distribution, Metabolism, and in Vitro Digestion of Beta-Cypermethrin in Laying Hens. Journal of Agricultural and Food Chemistry, 2017, 65, 7647-7652.	2.4	10
57	Synthesis of novel \hat{l}^2 -cyclodextrin functionalized S, N codoped carbon dots for selective detection of testosterone. Biosensors and Bioelectronics, 2017, 98, 195-201.	5.3	67
58	Enantioselective Degradation and Chiral Stability of Metalaxylâ€M in Tomato Fruits. Chirality, 2016, 28, 382-386.	1.3	8
59	Enantiomeric Separations of Pyriproxyfen and its Six Chiral Metabolites by Highâ€Performance Liquid Chromatography. Chirality, 2016, 28, 245-252.	1.3	8
60	Environmental Fate of Chiral Herbicide Fenoxaprop-ethyl in Water-Sediment Microcosms. Scientific Reports, 2016, 6, 26797.	1.6	16
61	Enantioselective Characteristics and Montmorillonite-Mediated Removal Effects of α-Hexachlorocyclohexane in Laying Hens. Environmental Science & Envi	4.6	11
62	A full evaluation for the enantiomeric impacts of lactofen and its metabolites on aquatic macrophyte Lemna minor. Water Research, 2016, 101, 55-63.	5.3	26
63	The enantioselective metabolic mechanism of quizalofop-ethyl and quizalofop-acid enantiomers in animal: protein binding, intestinal absorption, and in vitro metabolism in plasma and the microsome. RSC Advances, 2016, 6, 99003-99009.	1.7	1
64	Minimizing geometric isomerization of \hat{l}_{\pm} -cypermethrin in the residue analysis. Food Chemistry, 2016, 196, 828-832.	4.2	3
65	Polymer-coated magnetic nanospheres for preconcentration of organochlorine and pyrethroid pesticides prior to their determination by gas chromatography with electron capture detection. Mikrochimica Acta, 2016, 183, 1187-1194.	2.5	13
66	Enantioselective degradation and chiral stability of the herbicide fluazifop-butyl in soil and water. Chemosphere, 2016, 146, 315-322.	4.2	35
67	Chiral quizalofop-ethyl and its metabolite quizalofop-acid in soils: Enantioselective degradation, enzymes interaction and toxicity to Eisenia foetida. Chemosphere, 2016, 152, 173-180.	4.2	25
68	A simple method for the determination of organochlorine pollutants and the enantiomers in oil seeds based on matrix solid-phase dispersion. Food Chemistry, 2016, 194, 319-324.	4.2	30
69	Fate and Stereoselective Behavior of Benalaxyl in a Water–Sediment Microcosm. Journal of Agricultural and Food Chemistry, 2015, 63, 5205-5211.	2.4	18
70	pH-controlled quaternary ammonium herbicides capture/release by carboxymethyl- \hat{l}^2 -cyclodextrin functionalized magnetic adsorbents: Mechanisms and application. Analytica Chimica Acta, 2015, 901, 51-58.	2.6	14
71	Evaluation of organochlorine pesticides in soil using ultrasound-assisted liquid phase microextraction. Analytical Methods, 2015, 7, 1366-1371.	1.3	4
72	Enantioselective phytotoxicity and bioacitivity of the enantiomers of the herbicide napropamide. Pesticide Biochemistry and Physiology, 2015, 125, 38-44.	1.6	29

#	Article	IF	CITATIONS
73	Chiral Insecticide α-Cypermethrin and Its Metabolites: Stereoselective Degradation Behavior in Soils and the Toxicity to Earthworm <i>Eisenia fetida</i> . Journal of Agricultural and Food Chemistry, 2015, 63, 7714-7720.	2.4	31
74	Stereoselective quantitation of haloxyfop in environment samples and enantioselective degradation in soils. Chemosphere, 2015, 119, 583-589.	4.2	22
75	Multispectroscopic and molecular modeling approach to investigate the interaction of diclofop-methyl enantiomers with human serum albumin. Journal of Luminescence, 2014, 155, 231-237.	1.5	7
76	Hydrophilic–lipophilic balanced magnetic nanoparticles: Preparation and application in magnetic solid-phase extraction of organochlorine pesticides and triazine herbicides in environmental water samples. Talanta, 2014, 127, 1-8.	2.9	44
77	A simplified procedure for the determination of organochlorine pesticides and polychlorobiphenyls in edible vegetable oils. Food Chemistry, 2014, 151, 47-52.	4.2	50
78	Chiral Separation and Enantioselective Degradation of Vinclozolin in Soils. Chirality, 2014, 26, 155-159.	1.3	6
79	Effervescence assisted on-site liquid phase microextraction for the determination of five triazine herbicides in water. Journal of Chromatography A, 2014, 1371, 58-64.	1.8	44
80	A novel magnetic ionic liquid modified carbon nanotube for the simultaneous determination of aryloxyphenoxy-propionate herbicides and their metabolites in water. Analytica Chimica Acta, 2014, 852, 88-96.	2.6	58
81	Enantioselective metabolism of the chiral herbicide diclofop-methyl and diclofop by HPLC in loach (Misgurnus anguillicaudatus) liver microsomes in vitro. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2014, 969, 132-138.	1.2	13
82	Enantioselective Metabolism of Quizalofop-Ethyl in Rat. PLoS ONE, 2014, 9, e101052.	1.1	4
83	Low-density magnetofluid dispersive liquid–liquid microextraction for the fast determination of organochlorine pesticides in water samples by GC-ECD. Analytica Chimica Acta, 2013, 793, 37-43.	2.6	18
84	Bioactivity, toxicity and dissipation of hexaconazole enantiomers. Chemosphere, 2013, 93, 2523-2527.	4.2	46
85	Genderâ€Related In Vitro Metabolism of Hexaconazole and Its Enantiomers in Rats. Chirality, 2013, 25, 852-857.	1.3	10
86	Enantioselective Degradation and Chiral Stability of Malathion in Environmental Samples. Journal of Agricultural and Food Chemistry, 2012, 60, 372-379.	2.4	47
87	Enantioselective behavior of malathion enantiomers in toxicity to beneficial organisms and their dissipation in vegetables and crops. Journal of Hazardous Materials, 2012, 237-238, 140-146.	6.5	45
88	Direct chiral resolution of cloquintocetâ€mexyl and its application to <i>in vitro</i> degradation combined with clodinafopâ€propargyl. Biomedical Chromatography, 2012, 26, 1058-1061.	0.8	4
89	Enantioselective degradation of hexaconazole in rat hepatic microsomes in vitro. Chirality, 2012, 24, 283-288.	1.3	19
90	Enantiomer-specific toxicity and bioaccumulation of alpha-cypermethrin to earthworm Eisenia fetida. Journal of Hazardous Materials, 2011, 192, 1072-1078.	6.5	54

Donghui Liu

#	Article	IF	CITATION
91	Stereoselective metabolism of fipronil in water hyacinth (Eichhornia crassipes). Pesticide Biochemistry and Physiology, 2010, 97, 289-293.	1.6	31
92	Enantioselective Environmental Behavior of the Chiral Herbicide Fenoxaprop-ethyl and Its Chiral Metabolite Fenoxaprop in Soil. Journal of Agricultural and Food Chemistry, 2010, 58, 12878-12884.	2.4	31
93	Enantioselective Acute Toxicity and Bioaccumulation of Benalaxyl in Earthworm (Eisenia fedtia). Journal of Agricultural and Food Chemistry, 2009, 57, 8545-8549.	2.4	51
94	Enantioselective degradation of fipronil in Chinese cabbage (Brassica pekinensis). Food Chemistry, 2008, 110, 399-405.	4.2	65
95	The Chiral Separation of Triazole Pesticides Enantiomers by Amylose-tris(3,5-dimethylphenylcarbamate) Chiral Stationary Phase. Journal of Chromatographic Science, 2008, 46, 787-792.	0.7	8
96	Direct chiral resolution and its application to the determination of fungicide benalaxyl in soil and water by high-performance liquid chromatography. Analytica Chimica Acta, 2006, 555, 210-216.	2.6	42