
Andrea Comandini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5803377/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influences of propylene/propyne addition on toluene pyrolysis in a single-pulse shock tube. Combustion and Flame, 2022, 236, 111799.	2.8	7
2	An experimental and kinetic modeling study of benzene pyrolysis with C2â^2C3 unsaturated hydrocarbons. Combustion and Flame, 2022, 237, 111858.	2.8	17
3	Insights into pyrolysis kinetics of xylene isomers behind reflected shock waves. Combustion and Flame, 2022, 244, 112247.	2.8	4
4	Probing PAH formation chemical kinetics from benzene and toluene pyrolysis in a single-pulse shock tube. Proceedings of the Combustion Institute, 2021, 38, 891-900.	2.4	23
5	Laminar flame speed and shock-tube multi-species laser absorption measurements of Dimethyl Carbonate oxidation and pyrolysis near 1â€⁻atm. Proceedings of the Combustion Institute, 2021, 38, 977-985.	2.4	24
6	Pyrolysis of ethanol studied in a new high-repetition-rate shock tube coupled to synchrotron-based double imaging photoelectron/photoion coincidence spectroscopy. Combustion and Flame, 2021, 226, 53-68.	2.8	8
7	Reprint of: Pyrolysis of ethanol studied in a new high-repetition-rate shock tube coupled to synchrotron-based double imaging photoelectron/photoion coincidence spectroscopy. Combustion and Flame, 2021, 224, 150-165.	2.8	2
8	Detailed experimental and kinetic modeling study of toluene/C2 pyrolysis in a single-pulse shock tube. Combustion and Flame, 2021, 226, 129-142.	2.8	13
9	A comprehensive kinetic study on the speciation from propylene and propyne pyrolysis in a single-pulse shock tube. Combustion and Flame, 2021, 231, 111485.	2.8	11
10	Laminar Flame Speeds and Ignition Delay Times of Gasoline/Air and Gasoline/Alcohol/Air Mixtures: The Effects of Heavy Alcohol Compared to Light Alcohol. Energy & Fuels, 2021, 35, 14913-14923.	2.5	12
11	Initiation reactions in the high temperature decomposition of styrene. Physical Chemistry Chemical Physics, 2021, 23, 18432-18448.	1.3	7
12	A comparative kinetic study of C8–C10 linear alkylbenzenes pyrolysis in a single-pulse shock tube. Combustion and Flame, 2020, 221, 136-149.	2.8	15
13	An experimental and kinetic modeling study of phenylacetylene decomposition and the reactions with acetylene/ethylene under shock tube pyrolysis conditions. Combustion and Flame, 2020, 220, 257-271.	2.8	23
14	Combustion properties of H2/N2/O2/steam mixtures. Proceedings of the Combustion Institute, 2019, 37, 1537-1546.	2.4	27
15	Fast-flame limit for hydrogen/methane-air mixtures. Proceedings of the Combustion Institute, 2019, 37, 3661-3668.	2.4	12
16	Combustion properties of n-heptane/hydrogen mixtures. International Journal of Hydrogen Energy, 2019, 44, 2039-2052.	3.8	22
17	Polycyclic Aromatic Hydrocarbon Growth by Diradical Cycloaddition/Fragmentation. Journal of Physical Chemistry A, 2017, 121, 5921-5931.	1.1	23
18	Experimental study on turbulent expanding flames of lean hydrogen/air mixtures. Proceedings of the Combustion Institute, 2017, 36, 2823-2832.	2.4	51

ANDREA COMANDINI

#	Article	IF	CITATIONS
19	Experimental and modeling study of styrene oxidation in spherical reactor and shock tube. Combustion and Flame, 2016, 173, 425-440.	2.8	13
20	Unsupervised analysis of experiments of laminar flame propagation in a spherical enclosure. AIP Conference Proceedings, 2016, , .	0.3	1
21	Laminar flame speeds of pentanol isomers: An experimental and modeling study. Combustion and Flame, 2016, 166, 1-18.	2.8	51
22	Laminar flame speeds of n -decane, n -butylbenzene, and n -propylcyclohexane mixtures. Proceedings of the Combustion Institute, 2015, 35, 671-678.	2.4	49
23	Autoignition of n-Decane/n-Butylbenzene/n-Propylcyclohexane Mixtures and the Effects of the Exhaust Gas Recirculation. Combustion Science and Technology, 2014, 186, 1536-1551.	1.2	4
24	Comparative Study on Cyclohexane and Decalin Oxidation. Energy & amp; Fuels, 2014, 28, 714-724.	2.5	22
25	Experimental and modeling study on the pyrolysis and oxidation of iso-octane. Proceedings of the Combustion Institute, 2013, 34, 353-360.	2.4	48
26	Chemistry of Polycyclic Aromatic Hydrocarbons Formation from Phenyl Radical Pyrolysis and Reaction of Phenyl and Acetylene. Journal of Physical Chemistry A, 2012, 116, 2409-2434.	1.1	70
27	Thermal decomposition of 1-pentyl radicals at high pressures and temperatures. Chemical Physics Letters, 2012, 552, 20-26.	1.2	23
28	Radical/ï̃€-Bond Addition between <i>o</i> -Benzyne and Cyclic C ₅ Hydrocarbons. Journal of Physical Chemistry A, 2012, 116, 1183-1190.	1.1	14
29	Online and offline experimental techniques for polycyclic aromatic hydrocarbons recovery and measurement. Review of Scientific Instruments, 2012, 83, 034101.	0.6	23
30	Theoretical Study of the Formation of Naphthalene from the Radical/Ï€-Bond Addition between Single-Ring Aromatic Hydrocarbons. Journal of Physical Chemistry A, 2011, 115, 5547-5559.	1.1	48
31	High pressure study of m-xylene oxidation. Combustion and Flame, 2011, 158, 687-704.	2.8	38
32	Combustion of CO/H2 mixtures at elevated pressures. Proceedings of the Combustion Institute, 2007, 31, 429-437.	2.4	72
33	Using RON Synergistic Effects to Formulate Fuels for Better Fuel Economy and Lower CO2 Emissions. , $0,\ldots$		5