
Gary K Owens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5803273/publications.pdf Version: 2024-02-01

CADY K OWENS

#	Article	IF	CITATIONS
1	Molecular Regulation of Vascular Smooth Muscle Cell Differentiation in Development and Disease. Physiological Reviews, 2004, 84, 767-801.	28.8	2,865
2	Vascular Smooth Muscle Cells in Atherosclerosis. Circulation Research, 2016, 118, 692-702.	4.5	1,473
3	KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nature Medicine, 2015, 21, 628-637.	30.7	869
4	Recent insights into the cellular biology of atherosclerosis. Journal of Cell Biology, 2015, 209, 13-22.	5.2	798
5	Smooth muscle cell phenotypic switching in atherosclerosis. Cardiovascular Research, 2012, 95, 156-164.	3.8	672
6	Epigenetic Control of Smooth Muscle Cell Differentiation and Phenotypic Switching in Vascular Development and Disease. Annual Review of Physiology, 2012, 74, 13-40.	13.1	614
7	Smooth Muscle Differentiation Marker Gene Expression Is Regulated by RhoA-mediated Actin Polymerization. Journal of Biological Chemistry, 2001, 276, 341-347.	3.4	342
8	Myocardin Is a Critical Serum Response Factor Cofactor in the Transcriptional Program Regulating Smooth Muscle Cell Differentiation. Molecular and Cellular Biology, 2003, 23, 2425-2437.	2.3	325
9	Myocardin Is a Key Regulator of CArG-Dependent Transcription of Multiple Smooth Muscle Marker Genes. Circulation Research, 2003, 92, 856-864.	4.5	320
10	Kruppel-like Factor 4 Abrogates Myocardin-induced Activation of Smooth Muscle Gene Expression. Journal of Biological Chemistry, 2005, 280, 9719-9727.	3.4	297
11	A Transforming Growth Factor β (TGFβ) Control Element Drives TGFβ-induced Stimulation of Smooth Muscle α-Actin Gene Expression in Concert with Two CArG Elements. Journal of Biological Chemistry, 1997, 272, 10948-10956.	3.4	270
12	Molecular Determinants of Vascular Smooth Muscle Cell Diversity. Circulation Research, 2005, 96, 280-291.	4.5	269
13	Smooth muscle phenotypic modulation is an early event in aortic aneurysms. Journal of Thoracic and Cardiovascular Surgery, 2009, 138, 1392-1399.	0.8	257
14	Control of SRF binding to CArG box chromatin regulates smooth muscle gene expression in vivo. Journal of Clinical Investigation, 2005, 116, 36-48.	8.2	231
15	Regulation of Smooth Muscle α-Actin Expression In Vivo Is Dependent on CArG Elements Within the 5′ and First Intron Promoter Regions. Circulation Research, 1999, 84, 852-861.	4.5	226
16	Positive- and Negative-acting Krüppel-like Transcription Factors Bind a Transforming Growth Factor β Control Element Required for Expression of the Smooth Muscle Cell Differentiation Marker SM22α in Vivo. Journal of Biological Chemistry, 2000, 275, 37798-37806.	3.4	224
17	Stem Cell Pluripotency Genes Klf4 and Oct4 Regulate Complex SMC Phenotypic Changes Critical in Late-Stage Atherosclerotic Lesion Pathogenesis. Circulation, 2020, 142, 2045-2059.	1.6	221
18	Detection of histone modifications at specific gene loci in single cells in histological sections. Nature Methods, 2013, 10, 171-177.	19.0	220

#	Article	IF	CITATIONS
19	Multiple repressor pathways contribute to phenotypic switching of vascular smooth muscle cells. American Journal of Physiology - Cell Physiology, 2007, 292, C59-C69.	4.6	212
20	Conditional Deletion of Krul̀^ppel-Like Factor 4 Delays Downregulation of Smooth Muscle Cell Differentiation Markers but Accelerates Neointimal Formation Following Vascular Injury. Circulation Research, 2008, 102, 1548-1557.	4.5	211
21	Molecular mechanisms of decreased smooth muscle differentiation marker expression after vascular injury. Journal of Clinical Investigation, 2000, 106, 1139-1147.	8.2	202
22	Interleukin-1β has atheroprotective effects in advanced atherosclerotic lesions of mice. Nature Medicine, 2018, 24, 1418-1429.	30.7	192
23	Oxidized Phospholipids Induce Phenotypic Switching of Vascular Smooth Muscle Cells In Vivo and In Vitro. Circulation Research, 2007, 101, 792-801.	4.5	188
24	Transforming growth factor-β1 signaling contributes to development of smooth muscle cells from embryonic stem cells. American Journal of Physiology - Cell Physiology, 2004, 287, C1560-C1568.	4.6	186
25	Excitation–Transcription Coupling in Arterial Smooth Muscle. Circulation Research, 2006, 98, 868-878.	4.5	186
26	Genetic inactivation of IL-1 signaling enhances atherosclerotic plaque instability and reduces outward vessel remodeling in advanced atherosclerosis in mice. Journal of Clinical Investigation, 2012, 122, 70-79.	8.2	183
27	Development of the Aortic Vessel Wall as Defined by Vascular Smooth Muscle and Extracellular Matrix Markers. Developmental Biology, 1996, 178, 375-392.	2.0	174
28	Concise Review: Epigenetic Mechanisms Contribute to Pluripotency and Cell Lineage Determination of Embryonic Stem Cells. Stem Cells, 2007, 25, 2-9.	3.2	167
29	Activation of the pluripotency factor OCT4 in smooth muscle cells is atheroprotective. Nature Medicine, 2016, 22, 657-665.	30.7	165
30	KLF4-dependent perivascular cell plasticity mediates pre-metastatic niche formation and metastasis. Nature Medicine, 2017, 23, 1176-1190.	30.7	162
31	Recruitment of Serum Response Factor and Hyperacetylation of Histones at Smooth Muscle–Specific Regulatory Regions During Differentiation of a Novel P19-Derived In Vitro Smooth Muscle Differentiation System. Circulation Research, 2001, 88, 1127-1134.	4.5	160
32	Combinatorial Control of Smooth Muscle–Specific Gene Expression. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 737-747.	2.4	156
33	The Smooth Muscle α-Actin Gene Promoter Is Differentially Regulated in Smooth Muscle versus Non-smooth Muscle Cells. Journal of Biological Chemistry, 1995, 270, 7631-7643.	3.4	149
34	Smooth Muscle Cell Plasticity. Circulation Research, 2013, 112, 17-22.	4.5	146
35	Molecular Control of Vascular Smooth Muscle Cell Differentiation and Phenotypic Plasticity. Novartis Foundation Symposium, 2007, 283, 174-193.	1.1	144
36	Programming Smooth Muscle Plasticity With Chromatin Dynamics. Circulation Research, 2007, 100, 1428-1441.	4.5	143

#	Article	IF	CITATIONS
37	Genetic and Pharmacologic Disruption of Interleukin- $1\hat{1}^2$ Signaling Inhibits Experimental Aortic Aneurysm Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 294-304.	2.4	143
38	Selective Expression of an Endogenous Inhibitor of FAK Regulates Proliferation and Migration of Vascular Smooth Muscle Cells. Molecular and Cellular Biology, 2001, 21, 1565-1572.	2.3	142
39	Smooth Muscle–Specific Expression of the Smooth Muscle Myosin Heavy Chain Gene in Transgenic Mice Requires 5′-Flanking and First Intronic DNA Sequence. Circulation Research, 1998, 82, 908-917.	4.5	141
40	<scp>KLF</scp> 4 is a key determinant in the development and progression of cerebral cavernous malformations. EMBO Molecular Medicine, 2016, 8, 6-24.	6.9	141
41	Sp1-dependent activation of KLF4 is required for PDGF-BB-induced phenotypic modulation of smooth muscle. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H1027-H1037.	3.2	133
42	TNF-α Induces Phenotypic Modulation in Cerebral Vascular Smooth Muscle Cells: Implications for Cerebral Aneurysm Pathology. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1564-1573.	4.3	133
43	Cooperative Binding of KLF4, pELK-1, and HDAC2 to a G/C Repressor Element in the SM22α Promoter Mediates Transcriptional Silencing During SMC Phenotypic Switching In Vivo. Circulation Research, 2012, 111, 685-696.	4.5	129
44	CArG elements control smooth muscle subtype–specific expression of smooth muscle myosin in vivo. Journal of Clinical Investigation, 2001, 107, 823-834.	8.2	129
45	Vascular Smooth Muscle Cells in Cerebral Aneurysm Pathogenesis. Translational Stroke Research, 2014, 5, 338-346.	4.2	126
46	PRISM/PRDM6, a Transcriptional Repressor That Promotes the Proliferative Gene Program in Smooth Muscle Cells. Molecular and Cellular Biology, 2006, 26, 2626-2636.	2.3	117
47	Platelet-derived growth factor regulates actin isoform expression and growth factor regulates actin isoform expression and growth state in cultured rat aortic smooth muscle cells. Journal of Cellular Physiology, 1990, 142, 635-642.	4.1	109
48	Oxidized Phospholipids Induce Type VIII Collagen Expression and Vascular Smooth Muscle Cell Migration. Circulation Research, 2009, 104, 609-618.	4.5	108
49	Smooth Muscle α-Actin CArG Elements Coordinate Formation of a Smooth Muscle Cell–Selective, Serum Response Factor–Containing Activation Complex. Circulation Research, 2000, 86, 221-232.	4.5	107
50	Interleukin-1β modulates smooth muscle cell phenotype to a distinct inflammatory state relative to PDGF-DD via NF-κB-dependent mechanisms. Physiological Genomics, 2012, 44, 417-429.	2.3	106
51	Platelet-derived growth factor-BB and Ets-1 transcription factor negatively regulate transcription of multiple smooth muscle cell differentiation marker genes. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H2042-H2051.	3.2	103
52	Loss of <i>CDKN2B</i> Promotes p53-Dependent Smooth Muscle Cell Apoptosis and Aneurysm Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, e1-e10.	2.4	103
53	Inhibition of Interleukin-1Î ² Decreases Aneurysm Formation and Progression in a Novel Model of Thoracic Aortic Aneurysms. Circulation, 2014, 130, S51-9.	1.6	102
54	Expression of the Smooth Muscle Myosin Heavy Chain Gene Is Regulated by a Negative-acting GC-rich Element Located between Two Positive-acting Serum Response Factor-binding Elements. Journal of Biological Chemistry, 1997, 272, 6332-6340.	3.4	101

#	Article	IF	CITATIONS
55	Platelet-derived growth factor-BB represses smooth muscle cell marker genes via changes in binding of MKL factors and histone deacetylases to their promoters. American Journal of Physiology - Cell Physiology, 2007, 292, C886-C895.	4.6	101
56	A Transforming Growth Factor-Î ² Control Element Required for SM α-Actin Expression in Vivo Also Partially Mediates GKLF-dependent Transcriptional Repression. Journal of Biological Chemistry, 2003, 278, 48004-48011.	3.4	99
57	Epigenetic Control of Smooth Muscle Cell Identity and Lineage Memory. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 2508-2516.	2.4	97
58	Forced Expression of Myocardin Is Not Sufficient for Induction of Smooth Muscle Differentiation in Multipotential Embryonic Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 1596-1601.	2.4	95
59	Angiotensin II–Induced Stimulation of Smooth Muscle α-Actin Expression by Serum Response Factor and the Homeodomain Transcription Factor MHox. Circulation Research, 1997, 81, 600-610.	4.5	94
60	5′ CArG degeneracy in smooth muscle α-actin is required for injury-induced gene suppression in vivo. Journal of Clinical Investigation, 2005, 115, 418-427.	8.2	91
61	Regulation of α-Smooth Muscle Actin Expression in Granulation Tissue Myofibroblasts Is Dependent on the Intronic CArG Element and the Transforming Growth Factor-β1 Control Element. American Journal of Pathology, 2005, 166, 1343-1351.	3.8	87
62	Multiple cell types contribute to the atherosclerotic lesion fibrous cap by PDGFRÎ ² and bioenergetic mechanisms. Nature Metabolism, 2021, 3, 166-181.	11.9	87
63	Sphingosine-1-Phosphate Receptor Subtypes Differentially Regulate Smooth Muscle Cell Phenotype. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1454-1461.	2.4	86
64	Coronary Artery Disease Associated Transcription Factor TCF21 Regulates Smooth Muscle Precursor Cells That Contribute to the Fibrous Cap. PLoS Genetics, 2015, 11, e1005155.	3.5	86
65	Development of a Smooth Muscle–Targeted Cre Recombinase Mouse Reveals Novel Insights Regarding Smooth Muscle Myosin Heavy Chain Promoter Regulation. Circulation Research, 2000, 87, 363-369.	4.5	84
66	Clonally expanding smooth muscle cells promote atherosclerosis by escaping efferocytosis and activating the complement cascade. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15818-15826.	7.1	83
67	Smooth Muscle Cells and Myofibroblasts Use Distinct Transcriptional Mechanisms for Smooth Muscle α-Actin Expression. Circulation Research, 2007, 101, 883-892.	4.5	77
68	PDGF-DD, a novel mediator of smooth muscle cell phenotypic modulation, is upregulated in endothelial cells exposed to atherosclerosis-prone flow patterns. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H442-H452.	3.2	76
69	Smooth Muscle α-Actin Gene Requires Two E-Boxes for Proper Expression In Vivo and Is a Target of Class I Basic Helix-Loop-Helix Proteins. Circulation Research, 2003, 92, 840-847.	4.5	72
70	Origin of Neointimal Smooth Muscle. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 2579-2581.	2.4	72
71	Platelet-derived growth factor-induced destabilization of smooth muscle alpha-actin mRNA. Journal of Cellular Physiology, 1990, 145, 391-397.	4.1	67
72	The CANTOS Trial. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, e174-e177.	2.4	66

#	Article	IF	CITATIONS
73	Origin of Matrix-Producing Cells That Contribute to Aortic Fibrosis in Hypertension. Hypertension, 2016, 67, 461-468.	2.7	65
74	Sex-Stratified Gene Regulatory Networks Reveal Female Key Driver Genes of Atherosclerosis Involved in Smooth Muscle Cell Phenotype Switching. Circulation, 2021, 143, 713-726.	1.6	61
75	Genetic Regulation of Atherosclerosis-Relevant Phenotypes in Human Vascular Smooth Muscle Cells. Circulation Research, 2020, 127, 1552-1565.	4.5	60
76	A Retinoic Acid–Induced Clonal Cell Line Derived From Multipotential P19 Embryonal Carcinoma Cells Expresses Smooth Muscle Characteristics. Circulation Research, 1995, 76, 742-749.	4.5	60
77	Assessment of Contractility of Purified Smooth Muscle Cells Derived from Embryonic Stem Cells. Stem Cells, 2006, 24, 1678-1688.	3.2	59
78	Pitx2 is functionally important in the early stages of vascular smooth muscle cell differentiation. Journal of Cell Biology, 2008, 181, 461-473.	5.2	51
79	Substitution of the Degenerate Smooth Muscle (SM) α-Actin CC(A/T-rich)6GG Elements with c-fos Serum Response Elements Results in Increased Basal Expression but Relaxed SM Cell Specificity and Reduced Angiotensin II Inducibility. Journal of Biological Chemistry, 1998, 273, 8398-8406.	3.4	50
80	Stem cells and their derivatives can bypass the requirement of myocardin for smooth muscle gene expression. Developmental Biology, 2005, 288, 502-513.	2.0	49
81	The Smooth Muscle Myosin Heavy Chain Gene Exhibits Smooth Muscle Subtype-selective Modular Regulation in Vivo. Journal of Biological Chemistry, 2001, 276, 39076-39087.	3.4	48
82	PIAS1 Activates the Expression of Smooth Muscle Cell Differentiation Marker Genes by Interacting with Serum Response Factor and Class I Basic Helix-Loop-Helix Proteins. Molecular and Cellular Biology, 2005, 25, 8009-8023.	2.3	48
83	PIAS1 Mediates TGFÎ ² -Induced SM α-Actin Gene Expression Through Inhibition of KLF4 Function-Expression by Protein Sumoylation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 99-106.	2.4	48
84	Interaction of CArG Elements and a GC-rich Repressor Element in Transcriptional Regulation of the Smooth Muscle Myosin Heavy Chain Gene in Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 1997, 272, 29842-29851.	3.4	47
85	Cigarette Smoke Modulates Vascular Smooth Muscle Phenotype: Implications for Carotid and Cerebrovascular Disease. PLoS ONE, 2013, 8, e71954.	2.5	47
86	Lost in transdifferentiation. Journal of Clinical Investigation, 2004, 113, 1249-1251.	8.2	42
87	The Actin Associated Protein Palladin Is Important for the Early Smooth Muscle Cell Differentiation. PLoS ONE, 2010, 5, e12823.	2.5	40
88	Myocardin is differentially required for the development of smooth muscle cells and cardiomyocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H1707-H1721.	3.2	38
89	Enhanced single-cell RNA-seq workflow reveals coronary artery disease cellular cross-talk and candidate drug targets. Atherosclerosis, 2022, 340, 12-22.	0.8	35
90	Smooth muscle cell-specific deletion of <i>Col15a1</i> unexpectedly leads to impaired development of advanced atherosclerotic lesions. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H943-H958.	3.2	34

#	Article	IF	CITATIONS
91	"Attack of the Clones― Circulation Research, 2017, 120, 624-626.	4.5	32
92	Two MCAT elements of the SM Î \pm -actin promoter function differentially in SM vs. non-SM cells. American Journal of Physiology - Cell Physiology, 1998, 275, C608-C618.	4.6	30
93	Revealing the Origins of Foam Cells in Atherosclerotic Lesions. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 836-838.	2.4	29
94	Differential activation of the SMαA promoter in smooth vs. skeletal muscle cells by bHLH factors. American Journal of Physiology - Cell Physiology, 1999, 276, C1420-C1431.	4.6	28
95	Perivascular cell-specific knockout of the stem cell pluripotency gene Oct4 inhibits angiogenesis. Nature Communications, 2019, 10, 967.	12.8	27
96	The Actin-associated Protein Palladin Is Required for Development of Normal Contractile Properties of Smooth Muscle Cells Derived from Embryoid Bodies. Journal of Biological Chemistry, 2009, 284, 2121-2130.	3.4	26
97	Pericyte Bridges in Homeostasis and Hyperglycemia. Diabetes, 2020, 69, 1503-1517.	0.6	25
98	Early Plus Delayed Hirudin Reduces Restenosis in the Atherosclerotic Rabbit More Than Early Administration Alone. Circulation, 1998, 98, 2301-2306.	1.6	24
99	ANG II type 2 receptor regulates smooth muscle growth and force generation in late fetal mouse development. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H96-H102.	3.2	24
100	Reconciling Smooth Muscle Cell Oligoclonality and Proliferative Capacity in Experimental Atherosclerosis. Circulation Research, 2016, 119, 1262-1264.	4.5	23
101	WD Repeat-containing Protein 5, a Ubiquitously Expressed Histone Methyltransferase Adaptor Protein, Regulates Smooth Muscle Cell-selective Gene Activation through Interaction with Pituitary Homeobox 2. Journal of Biological Chemistry, 2011, 286, 21853-21864.	3.4	22
102	Irradiation abolishes smooth muscle investment into vascular lesions in specific vascular beds. JCI Insight, 2018, 3, .	5.0	22
103	H3K4 di-methylation governs smooth muscle lineage identity and promotes vascular homeostasis by restraining plasticity. Developmental Cell, 2021, 56, 2765-2782.e10.	7.0	21
104	5-Lipoxygenase Pathway in Experimental Abdominal Aortic Aneurysms. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 2669-2678.	2.4	19
105	<i>Klf4</i> has an unexpected protective role in perivascular cells within the microvasculature. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H402-H414.	3.2	17
106	KLF4 (Kruppel-Like Factor 4)-Dependent Perivascular Plasticity Contributes to Adipose Tissue inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 284-301.	2.4	17
107	Dichotomous Roles of Smooth Muscle Cell–Derived MCP1 (Monocyte Chemoattractant Protein 1) in Development of Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 942-956.	2.4	16
108	Determinants of angiotensin II-induced hypertrophy versus hyperplasia in vascular smooth muscle. Drug Development Research, 1993, 29, 83-87.	2.9	14

#	Article	IF	CITATIONS
109	Shifting the Focus of Preclinical, Murine Atherosclerosis Studies From Prevention to Late-Stage Intervention. Circulation Research, 2017, 120, 775-777.	4.5	14
110	SMC-Derived Hyaluronan Modulates Vascular SMC Phenotype in Murine Atherosclerosis. Circulation Research, 2021, 129, 992-1005.	4.5	12
111	Myh11+ microvascular mural cells and derived mesenchymal stem cells promote retinal fibrosis. Scientific Reports, 2020, 10, 15808.	3.3	9
112	Derivation of Contractile Smooth Muscle Cells from Embryonic Stem Cells. Methods in Molecular Biology, 2009, 482, 345-367.	0.9	9
113	SREBP1 regulates Lgals3 activation in response to cholesterol loading. Molecular Therapy - Nucleic Acids, 2022, 28, 892-909.	5.1	7
114	Human thrombin receptor-activating peptide-induced proliferation of cultured vascular smooth muscle cells exhibits species specificity. Drug Development Research, 1995, 35, 7-12.	2.9	6
115	PlaqOmics Leducq Fondation Trans-Atlantic Network. Circulation Research, 2019, 124, 1297-1299.	4.5	3
116	Response to Letter Regarding Article, "Inhibition of Interleukin-1β Decreases Aneurysm Formation and Progression in a Novel Model of Thoracic Aortic Aneurysm― Circulation, 2015, 131, e400.	1.6	1
117	Developmental Vascular Biology Workshop II Abstracts February 1–5, 2006, Asilomar Conference Grounds, Pacific Grove, California. Microcirculation, 2006, 13, 131-172.	1.8	0
118	Paracrine Effect of Bone Marrow Cells on Hypoxiaâ€Mediated Vascular Growth. FASEB Journal, 2006, 20, A716.	0.5	0
119	Sp1 is required for expression of KLF4 in phenotypically modulated smooth muscle cells. FASEB Journal, 2007, 21, A68.	0.5	0
120	POVPC induces the smooth muscle cells inflammatory phenotype. FASEB Journal, 2007, 21, A517.	0.5	0
121	The Requirement of CCâ€Chemokine Receptorâ€2 (CCR2) Expression by Bone Marrowâ€Derived Cells (BMCs) for Arteriogenesis is Stimulus Dependent. FASEB Journal, 2008, 22, 1147.14.	0.5	0
122	Diminished PDGFâ€8 expression in boneâ€marrow derived cells leads to increased hypoxiaâ€induced angiogenesis in a novel chimeric mouse model. FASEB Journal, 2008, 22, 67-67.	0.5	0
123	A Transcriptional Regulation Bioinformatics Pipeline to Predict Coâ€Regulated Genes in Vascular Smooth Muscle Cell Phenotypic Transitions During Atherosclerosis. FASEB Journal, 2022, 36, .	0.5	0