
Ram Swaroop Meena

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5803218/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reuse of poor-quality water for sustainable crop production in the changing scenario of climate. Environment, Development and Sustainability, 2023, 25, 7345-7376.	2.7	24
2	Carbon sequestration potential and CO2 fluxes in a tropical forest ecosystem. Ecological Engineering, 2022, 176, 106541.	1.6	38
3	Assessment of land use systems for <scp>CO₂</scp> sequestration, carbon credit potential, and income security in Vindhyan region, India. Land Degradation and Development, 2022, 33, 670-682.	1.8	50
4	Importance of natural resources conservation: Moving toward the sustainable world. , 2022, , 3-27.		5
5	Environmental education for sustainable development. , 2022, , 415-431.		14
6	Comprehensive environmental impact assessment for designing carbon-cum-energy efficient, cleaner and eco-friendly production system for rice-fallow agro-ecosystems of South Asia. Journal of Cleaner Production, 2022, 331, 129973.	4.6	10
7	Remote sensing for agriculture and resource management. , 2022, , 91-135.		10
8	Agroforestry a model for ecological sustainability. , 2022, , 289-307.		3
9	Species invasion and ecological risk. , 2022, , 503-531.		7
10	Eco-restoration of bauxite mining: An ecological approach. , 2022, , 173-193.		3
11	Ecological wisdom for natural resources management and sustainability. , 2022, , 219-241.		2
12	Integrated Nutrient Management Improves the Productivity and Nutrient Use Efficiency of Lens culinaris Medik Sustainability, 2022, 14, 1284.	1.6	23
13	Riparian conservation and restoration for ecological sustainability. , 2022, , 195-216.		1
14	Agriculture ecosystem models for CO2 sequestration, improving soil physicochemical properties, and restoring degraded land. Ecological Engineering, 2022, 176, 106546.	1.6	54
15	Assessment of diverse tillage system with mulching for water-cum-energy efficiency and soil carbon stabilization in maize (Zea mays L.)-rapeseed (Brassica campestris L.) system. Soil and Tillage Research, 2022, 219, 105326.	2.6	21
16	Prospects of beneficial microbes as a natural resource for sustainable legumes production under changing climate. , 2022, , 29-56.		1
17	Biological Nitrogen Fixation: An Analysis of Intoxicating Tribulations from Pesticides for Sustainable Legume Production. , 2022, , 351-374.		1
18	Current Status and Potential of Biofortification to Enhance Crop Nutritional Quality: An Overview. Sustainability, 2022, 14, 3301.	1.6	24

#	Article	IF	CITATIONS
19	Recent strategies for pulse biofortification to combat malnutrition. , 2022, , 179-204.		1
20	Legumes for eco-friendly weed management in agroecosystem. , 2022, , 133-154.		2
21	Sustainable intensification in cropping systems through inclusion of legumes. , 2022, , 27-50.		О
22	Legume-based inter-cropping to achieve the crop, soil, and environmental health security. , 2022, , 307-328.		6
23	Conventional, genomics, and post-genomics era of pulses breeding: Current status and future prospects. , 2022, , 553-574.		2
24	Grain legumes: A diversified diet for sustainable livelihood, food, and nutritional security. , 2022, , 157-178.		1
25	Grain legumes: Recent advances and technological interventions. , 2022, , 507-532.		Ο
26	Effect of legumes on nitrogen economy and budgeting in South Asia. , 2022, , 619-638.		5
27	Residual nitrogen for succeeding crops in legume-based cropping system. , 2022, , 113-132.		Ο
28	Prospective Role of Plant Growth Regulators for Tolerance to Abiotic Stresses. , 2021, , 1-38.		11
29	Designing an ecofriendly and carbon-cum-energy efficient production system for the diverse agroecosystem of South Asia. Energy, 2021, 214, 118860.	4.5	20
30	Ecomodelling Towards Natural Resource Management and Sustainability. , 2021, , 491-519.		2
31	Ecological Intensification for Sustainable Agriculture in South Asia. , 2021, , 171-213.		2
32	Biochar Role in Soil Carbon Stabilization and Crop Productivity. , 2021, , 1-46.		1
33	Ecological Intensification for Sustainable Development. , 2021, , 137-170.		25
34	Soil Carbon Stock and Sequestration: Implications for Climate Change Adaptation and Mitigation. , 2021, , 461-489.		40
35	Soil microbial and nutrient dynamics under different sowings environment of Indian mustard (Brassica juncea L.) in rice based cropping system. Scientific Reports, 2021, 11, 5289.	1.6	65
36	Nitrogen fixation in maize: breeding opportunities. Theoretical and Applied Genetics, 2021, 134, 1263-1280.	1.8	48

13

#	Article	IF	CITATIONS
37	Comparative assessment of energy flow, carbon auditing and eco-efficiency of diverse tillage systems for cleaner and sustainable crop production in eastern India. Journal of Cleaner Production, 2021, 293, 126162.	4.6	19
38	Conservation tillage and organic nutrients management improve soil properties, productivity, and economics of a maizeâ€vegetable pea system in the Eastern Himalayas. Land Degradation and Development, 2021, 32, 4637-4654.	1.8	19
39	Eco-Designing for Sustainability. , 2021, , 565-595.		40
40	Ecological Intensification of Natural Resources Towards Sustainable Productive System. , 2021, , 1-28.		30
41	Glomalin: A Key Indicator for Soil Carbon Stabilization. , 2021, , 47-81.		2
42	Water Footprint in Rice-Based Cropping Systems of South Asia. , 2021, , 273-308.		7
43	Resource Conservation for Sustainable Development. , 2021, , 457-492.		0
44	Agroecosystem Service Management and Environmental Sustainability. , 2021, , 379-402.		1
45	Crop Residue Management: A Novel Technique for Restoring Soil Health and Sustainable Intensification in India. , 2021, , 229-265.		2
46	Agroecology Towards Environmental Sustainability. , 2021, , 323-352.		4
47	Eco-Designing for Soil Health and Services. , 2021, , 97-134.		0
48	Cost-Effective and Eco-Friendly Agricultural Technologies in Rice-Wheat Cropping Systems for Food and Environmental Security. , 2021, , 69-96.		3
49	Agroforestry and Its Services for Soil Management and Sustainability. , 2021, , 353-377.		3
50	Sustainable Intensification for Agroecosystem Services and Management: An Overview. , 2021, , 1-35.		3
51	Climate Change Vulnerability and Agroecosystem Services. , 2021, , 163-195.		1
52	Intensification for Agroecosystem Services. , 2021, , 197-228.		0
53	Energy and Climate Footprint Towards the Environmental Sustainability. , 2021, , 415-443.		28

54 Ecological Footprints in Agroecosystem: An Overview. , 2021, , 1-23.

4

#	Article	IF	CITATIONS
55	Natural Resources Intensification and Footprints Management for Sustainable Food System. , 2021, , 25-68.		3
56	Carbon and Nitrogen Footprints Management for Environmental and Food Security. , 2021, , 115-153.		0
57	Land Footprint Management and Policies. , 2021, , 221-246.		25
58	Potassium and Water-Deficient Conditions Influence the Growth, Yield and Quality of Ratoon Sugarcane (Saccharum officinarum L.) in a Semi-Arid Agroecosystem. Agronomy, 2021, 11, 2257.	1.3	9
59	Geospatial Technologies for Crops and Soils: An Overview. , 2021, , 1-48.		5
60	Remote Sensing and Geographic Information System: A Tool for Precision Farming. , 2021, , 49-111.		9
61	Reduction of Energy Consumption in Agriculture for Sustainable Green Future. , 2021, , 199-239.		0
62	Use of Agrochemicals in Agriculture: Alarming Issues and Solutions. , 2021, , 85-122.		4
63	Consequences of Salinity Stress on the Quality of Crops and Its Mitigation Strategies for Sustainable Crop Production: An Outlook of Arid and Semi-arid Regions. , 2020, , 503-533.		31
64	Crop residue and weed biomass incorporation with microbial inoculation improve the crop and soil productivity in the rice (Oryza sativa L.) -toria (Brassica rapa L.) cropping system. Environmental and Sustainability Indicators, 2020, 7, 100048.	1.7	5
65	Influence of Tillage and Organic Amendments on Terrace Soil Bio-physico-Chemical Properties and Carbon Sequestration Index. Communications in Soil Science and Plant Analysis, 2020, 51, 2683-2700.	0.6	4
66	The long-term impact of vehicular traffic on winter and spring methane flux under no-till farming in Central Ohio. Atmospheric Pollution Research, 2020, 11, 2030-2035.	1.8	4
67	Long-term impact of topsoil depth and amendments on carbon and nitrogen budgets in the surface layer of an Alfisol in Central Ohio. Catena, 2020, 194, 104752.	2.2	168
68	Long term crop management effects on soil organic carbon, structure, and water retention in a cropland soil in central Ohio, USA. Journal of Plant Nutrition and Soil Science, 2020, 183, 200-207.	1.1	1
69	Long-term impacts of topsoil depth and amendments on soil physical and hydrological properties of an Alfisol in central Ohio, USA. Geoderma, 2020, 363, 114164.	2.3	183
70	Legumes for Carbon and Nitrogen Cycling: An Organic Approach. , 2020, , 337-375.		36
71	Carbon and Nitrogen Mineralization Dynamics: A Perspective in Rice-Wheat Cropping System. , 2020, , 463-498.		4

Biochar and Organic Amendments for Sustainable Soil Carbon and Soil Health., 2020, , 45-85.

#	Article	IF	CITATIONS
73	Soil Carbon Sequestration in Crop Production. , 2020, , 1-39.		24
74	Management of Micronutrients in Soil for the Nutritional Security. , 2020, , 103-134.		4
75	Carbon Management in Diverse Land-Use Systems of Eastern Himalayan Subtropics. , 2020, , 123-142.		3
76	Drought and Heat Stress in Cotton (Gossypium hirsutum L.): Consequences and Their Possible Mitigation Strategies. , 2020, , 613-634.		16
77	Adverse Effect of Drought on Quality of Major Cereal Crops: Implications and Their Possible Mitigation Strategies. , 2020, , 635-658.		4
78	Nitrogen Fixation of Legumes Under the Family Fabaceae: Adverse Effect of Abiotic Stresses and Mitigation Strategies. , 2020, , 75-111.		5
79	Vehicular traffic effects on hydraulic properties of a Crosby silt Ioam under a long-term no-till farming in Central Ohio, USA. Soil and Tillage Research, 2020, 202, 104654.	2.6	29
80	Impact of Agrochemicals on Soil Microbiota and Management: A Review. Land, 2020, 9, 34.	1.2	397
81	Carbon Footprint in Eroded Soils and Its Impact on Soil Health. , 2020, , 1-30.		2
82	Radioecology and Substance Interaction with Nature. , 2019, , 437-483.		0
83	Soil for Sustainable Environment and Ecosystems Management. , 2019, , 189-221.		20
84	Drought and salinity stresses in barley: Consequences and mitigation strategies. Australian Journal of Crop Science, 2019, , 810-820.	0.1	26
85	Long-Term Effects of Different Passages of Vehicular Traffic on Soil Properties and Carbon Storage of a Crosby Silt Loam in USA. Pedosphere, 2019, 29, 150-160.	2.1	9
86	Agroforestry: A Holistic Approach for Agricultural Sustainability. , 2019, , 101-131.		16
87	Agriculture, Forestry and Environmental Sustainability: A Way Forward. , 2019, , 1-29.		1
88	Sustainable Forestry Under Changing Climate. , 2019, , 285-326.		11
89	Sustainable soybean production and abiotic stress management in saline environments: a critical review. Australian Journal of Crop Science, 2019, 13, 228-236.	0.1	21
90	Drought and salinity stress management for higher and sustainable canola (Brassica napus L.) production: a critical review. Australian Journal of Crop Science, 2019, 13, 88-97.	0.1	42

#	Article	IF	CITATIONS
91	Response of alley cropping-grown sesame to lime and sulphur on yield and available nutrient status in an acidic soil of Eastern India. Energy, Ecology and Environment, 2019, 4, 65-74.	1.9	17
92	Impact of no-till and mulching on soil carbon sequestration under rice (Oryza sativa L.)-rapeseed (Brassica campestris L. var. rapeseed) cropping system in hilly agro-ecosystem of the Eastern Himalayas, India. Agriculture, Ecosystems and Environment, 2019, 275, 81-92.	2.5	58
93	Longâ€term effects of vehicular passages on soil carbon sequestration and carbon dioxide emission in a noâ€till cornâ€soybean rotation on a Crosby silt loam in Central Ohio, USA. Journal of Plant Nutrition and Soil Science, 2019, 182, 126-136.	1.1	10
94	Conservation tillage and nutrient management effects on productivity and soil carbon sequestration under double cropping of rice in north eastern region of India. Ecological Indicators, 2019, 105, 303-315.	2.6	88
95	Soil Erosion and Management Strategies. , 2019, , 73-122.		14
96	Conservation Agriculture: Perspectives on Soil and Environmental Management in Indo-Gangetic Plains of South Asia. , 2019, , 123-168.		2
97	EFFECTS OF DROUGHT STRESS ON THE QUALITY OF MAJOR OILSEED CROPS: IMPLICATIONS AND POSSIBLE MITIGATION STRATEGIES – A REVIEW. Applied Ecology and Environmental Research, 2019, 17, 4019-4043.	0.2	65
98	Soil and Environmental Management. , 2019, , 1-27.		2
99	Conservation tillage and mulching effects on the adaptive capacity of direct-seeded upland rice (<i>Oryza sativa</i> L.) to alleviate weed and moisture stresses in the North Eastern Himalayan Region of India. Archives of Agronomy and Soil Science, 2018, 64, 1254-1267.	1.3	54
100	Energy budget and carbon footprint in a no-till and mulch based rice–mustard cropping system. Journal of Cleaner Production, 2018, 191, 144-157.	4.6	164
101	Seaweed extract as organic bio-stimulant improves productivity and quality of rice in eastern Himalayas. Journal of Applied Phycology, 2018, 30, 547-558.	1.5	78
102	Response and interaction of Bradyrhizobium japonicum and arbuscular mycorrhizal fungi in the soybean rhizosphere. Plant Growth Regulation, 2018, 84, 207-223.	1.8	209
103	Role of Soil Phosphorus on Legume Production. , 2018, , 487-510.		65
104	Nitrogen and Legumes: A Meta-analysis. , 2018, , 277-314.		55
105	Legume Green Manuring: An Option for Soil Sustainability. , 2018, , 387-408.		53
106	Role of Legumes in Soil Carbon Sequestration. , 2018, , 109-138.		59
107	Cereal+Legume Intercropping: An Option for Improving Productivity and Sustaining Soil Health. , 2018, , 347-386.		58

Legumes and Sustainable Use of Soils. , 2018, , 1-31.

#	Article	IF	CITATIONS
109	Grain Legumes: Impact on Soil Health and Agroecosystem. , 2018, , 511-539.		41
110	Harnessing Soil Rhizobacteria for Improving Drought Resilience in Legumes. , 2018, , 235-275.		25
111	Climate Change Impact on Soil Carbon Stocks in India. , 2018, , 301-322.		3
112	ROLE OF OSMOPROTECTANTS AND SOIL AMENDMENTS FOR SUSTAINABLE SOYBEAN (Glycine max L.) PRODUCTION UNDER DROUGHT CONDITION: A REVIEW. Journal of Experimental Biology and Agricultural Sciences, 2018, 6, 32-41.	0.1	10
113	Response of sowing dates and bio regulators on yield of clusterbean under current climate in alley cropping system in eastern U.P., India. Legume Research, 2018, , .	0.0	11
114	Energy budgeting for designing sustainable and environmentally clean/safer cropping systems for rainfed rice fallow lands in India. Journal of Cleaner Production, 2017, 158, 29-37.	4.6	163
115	Enzymatic Degradation of Lignin in Soil: A Review. Sustainability, 2017, 9, 1163.	1.6	246
116	Amino Acid: Its Dual Role as Nutrient and Scavenger of Free Radicals in Soil. Sustainability, 2017, 9, 1402.	1.6	55
117	Effects of Conservation Tillage and Nutrient Management Practices on Soil Fertility and Productivity of Rice (Oryza sativa L.)–Rice System in North Eastern Region of India. Sustainability, 2017, 9, 1816.	1.6	48
118	Soil Acidity Management and an Economics Response of Lime and Sulfur on Sesame in an Alley Cropping System. International Journal of Current Microbiology and Applied Sciences, 2017, 6, 2566-2573.	0.0	35
119	Influence of crop geometry and cultivars on growth, yield and production efficiency of dry direct-seeded rice (Oryza sativa L.). Journal of Applied and Natural Science, 2017, 9, 2469-2476.	0.2	8
120	Potassium Uptake by Crops as Well as Microorganisms. , 2016, , 267-280.		82
121	Potassium as an Important Plant Nutrient in Sustainable Agriculture: A State of the Art. , 2016, , 21-29.		82
122	Response of bio-regulators to morphology and yield of clusterbean [Cyamopsis tetragonoloba (L.) Taub.] under different sowing environments. Journal of Applied and Natural Science, 2016, 8, 715-718.	0.2	56
123	Mungbean yield and nutrient uptake performance in response of NPK and lime levels under acid soil in Vindhyan region, India. Journal of Applied and Natural Science, 2016, 8, 860-863.	0.2	10
124	The needs of healthy soils for a healthy world. Journal of Cleaner Production, 2015, 102, 560-561.	4.6	144
125	Influence of irrigation regimes and weed management practices on water use and nutrient uptake in wheat (Triticum aestivum L. emend. Fiori and Paol.). Bangladesh Journal of Botany, 2015, 44, 437-442.	0.2	47
126	Effect of INM on nodulation, yield, quality and available nutrient status in soil after harvest of greengram. Legume Research, 2015, , .	0.0	14

#	Article	IF	CITATIONS
127	Consequences and Mitigation Strategies of Heat Stress for Sustainability of Soybean (Glycine max L.) Tj ETQq1	1 0.78431	.4 rgBT /Overld
128	B Delineation of Soil Moisture Potentials and Moisture Balance Components. , 0, , .		3
129	Forest Soil Water in Landscape Context. , 0, , .		2
130	Elevated CO ₂ Concentration Improves Heat-Tolerant Ability in Crops. , 0, , .		5
13	Maize Adaptability to Heat Stress under Changing Climate. , 0, , .		7
132	Response of mungbean to NPK and lime under the conditions of Vindhyan Region of Uttar Pradesh. Legume Research, 0, , .	0.0	2
13	Impact of crop establishment and residue management on soil properties and productivity in riceâ€fallow ecosystems in India. Land Degradation and Development, 0, , .	1.8	4