
## Yasuhiko Minokoshi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5803027/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature, 2002, 415, 339-343.                                                                                                                                                                       | 13.7 | 1,823     |
| 2  | AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature, 2004, 428, 569-574.                                                                                                                                                     | 13.7 | 1,464     |
| 3  | PTP1B Regulates Leptin Signal Transduction In Vivo. Developmental Cell, 2002, 2, 489-495.                                                                                                                                                                                            | 3.1  | 735       |
| 4  | Adiponectin Stimulates AMP-Activated Protein Kinase in the Hypothalamus and Increases Food Intake.<br>Cell Metabolism, 2007, 6, 55-68.                                                                                                                                               | 7.2  | 701       |
| 5  | ATP-sensitive K+ channels in the hypothalamus are essential for the maintenance of glucose homeostasis. Nature Neuroscience, 2001, 4, 507-512.                                                                                                                                       | 7.1  | 470       |
| 6  | A Liver-Derived Secretory Protein, Selenoprotein P, Causes Insulin Resistance. Cell Metabolism, 2010,<br>12, 483-495.                                                                                                                                                                | 7.2  | 469       |
| 7  | Adipocyte/macrophage fatty acid binding proteins control integrated metabolic responses in obesity and diabetes. Cell Metabolism, 2005, 1, 107-119.                                                                                                                                  | 7.2  | 415       |
| 8  | Regulation of Pancreatic Î <sup>2</sup> Cell Mass by Neuronal Signals from the Liver. Science, 2008, 322, 1250-1254.                                                                                                                                                                 | 6.0  | 206       |
| 9  | Tissue-specific Ablation of the GLUT4 Glucose Transporter or the Insulin Receptor Challenges<br>Assumptions about Insulin Action and Glucose Homeostasis. Journal of Biological Chemistry, 2003,<br>278, 33609-33612.                                                                | 1.6  | 201       |
| 10 | Leptin Stimulates Fatty Acid Oxidation and Peroxisome Proliferator-Activated Receptor α Gene<br>Expression in Mouse C2C12 Myoblasts by Changing the Subcellular Localization of the α2 Form of<br>AMP-Activated Protein Kinase. Molecular and Cellular Biology, 2007, 27, 4317-4327. | 1.1  | 201       |
| 11 | Hypothalamic Orexin Stimulates Feeding-Associated Glucose Utilization in Skeletal Muscle via<br>Sympathetic Nervous System. Cell Metabolism, 2009, 10, 466-480.                                                                                                                      | 7.2  | 196       |
| 12 | Conditional Ablation of Orexin/Hypocretin Neurons: A New Mouse Model for the Study of Narcolepsy and Orexin System Function. Journal of Neuroscience, 2014, 34, 6495-6509.                                                                                                           | 1.7  | 181       |
| 13 | An Increase in Murine Skeletal Muscle Peroxisome Proliferator-Activated Receptor-γ Coactivator-1α<br>(PGC-1α) mRNA in Response to Exercise Is Mediated by β-Adrenergic Receptor Activation. Endocrinology,<br>2007, 148, 3441-3448.                                                  | 1.4  | 165       |
| 14 | Lack of TRPM2 Impaired Insulin Secretion and Glucose Metabolisms in Mice. Diabetes, 2011, 60, 119-126.                                                                                                                                                                               | 0.3  | 163       |
| 15 | Disruption of CXC Motif Chemokine Ligand-14 in Mice Ameliorates Obesity-induced Insulin Resistance.<br>Journal of Biological Chemistry, 2007, 282, 30794-30803.                                                                                                                      | 1.6  | 147       |
| 16 | Leptin Signaling Targets the Thyrotropin-Releasing Hormone Gene Promoterin Vivo. Endocrinology, 2004, 145, 2221-2227.                                                                                                                                                                | 1.4  | 114       |
| 17 | Chrelin raises [Ca2+]i via AMPK in hypothalamic arcuate nucleus NPY neurons. Biochemical and<br>Biophysical Research Communications, 2008, 366, 388-392.                                                                                                                             | 1.0  | 112       |
| 18 | Hyperglycemia induces skeletal muscle atrophy via a WWP1/KLF15 axis. JCI Insight, 2019, 4, .                                                                                                                                                                                         | 2.3  | 107       |

| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Distinct Effects of Leptin and a Melanocortin Receptor Agonist Injected Into Medial Hypothalamic<br>Nuclei on Glucose Uptake in Peripheral Tissues. Diabetes, 2009, 58, 2757-2765.                                       | 0.3 | 94        |
| 20 | Induction of Hypothalamic Sirt1 Leads to Cessation of Feeding via Agouti-Related Peptide.<br>Endocrinology, 2010, 151, 2556-2566.                                                                                        | 1.4 | 92        |
| 21 | GLUT4 glucose transporter deficiency increases hepatic lipid production and peripheral lipid utilization. Journal of Clinical Investigation, 2004, 114, 1666-1675.                                                       | 3.9 | 91        |
| 22 | Role of hypothalamic AMP-kinase in food intake regulation. Nutrition, 2008, 24, 786-790.                                                                                                                                 | 1.1 | 83        |
| 23 | ATP-sensitive potassium channels participate in glucose uptake in skeletal muscle and adipose tissue.<br>American Journal of Physiology - Endocrinology and Metabolism, 2002, 283, E1178-E1184.                          | 1.8 | 81        |
| 24 | Hypothalamic SIRT1 prevents age-associated weight gain by improving leptin sensitivity in mice.<br>Diabetologia, 2014, 57, 819-831.                                                                                      | 2.9 | 80        |
| 25 | Accelerated norepinephrine turnover in peripheral tissues after ventromedial hypothalamic stimulation in rats. Brain Research, 1989, 481, 298-303.                                                                       | 1.1 | 79        |
| 26 | Activation of SF1 Neurons in the Ventromedial Hypothalamus by DREADD Technology Increases Insulin<br>Sensitivity in Peripheral Tissues. Diabetes, 2017, 66, 2372-2386.                                                   | 0.3 | 77        |
| 27 | Effects of noradrenaline on the cell-surface glucose transporters in cultured brown adipocytes:<br>novel mechanism for selective activation of GLUT1 glucose transporters. Biochemical Journal, 1998,<br>330, 397-403.   | 1.7 | 72        |
| 28 | Neuronal Protein Tyrosine Phosphatase 1B Deficiency Results in Inhibition of Hypothalamic AMPK and<br>Isoform-Specific Activation of AMPK in Peripheral Tissues. Molecular and Cellular Biology, 2009, 29,<br>4563-4573. | 1.1 | 72        |
| 29 | GLUT4 glucose transporter deficiency increases hepatic lipid production and peripheral lipid utilization. Journal of Clinical Investigation, 2004, 114, 1666-1675.                                                       | 3.9 | 69        |
| 30 | Structural basis for compound C inhibition of the human AMP-activated protein kinase α2 subunit<br>kinase domain. Acta Crystallographica Section D: Biological Crystallography, 2011, 67, 480-487.                       | 2.5 | 64        |
| 31 | Central Melanocortin Signaling Restores Skeletal Muscle AMP-Activated Protein Kinase<br>Phosphorylation in Mice Fed a High-Fat Diet. Cell Metabolism, 2007, 5, 395-402.                                                  | 7.2 | 63        |
| 32 | Regulatory mechanism of the ventromedial hypothalamus in enhancing glucose uptake in skeletal<br>muscles. Brain Research, 1994, 649, 343-347.                                                                            | 1.1 | 62        |
| 33 | L-Glutamate and Insulin Enhance Glycogen Synthesis in Cultured Astrocytes from the Rat Brain<br>Through Different Intracellular Mechanisms. Journal of Neurochemistry, 2002, 73, 400-407.                                | 2.1 | 61        |
| 34 | Skeletal Muscle AMP-Activated Protein Kinase Phosphorylation Parallels Metabolic Phenotype in<br>Leptin Transgenic Mice Under Dietary Modification. Diabetes, 2005, 54, 2365-2374.                                       | 0.3 | 58        |
| 35 | Role of Central Leptin Signaling in the Starvation-Induced Alteration of B-Cell Development. Journal of Neuroscience, 2011, 31, 8373-8380.                                                                               | 1.7 | 58        |
| 36 | Regulatory role of leptin in glucose and lipid metabolism in skeletal muscle. Indian Journal of<br>Endocrinology and Metabolism, 2012, 16, 562.                                                                          | 0.2 | 58        |

| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Systemic Glucoregulation by Glucose-Sensing Neurons in the Ventromedial Hypothalamic Nucleus<br>(VMH). Journal of the Endocrine Society, 2017, 1, 449-459.                                  | 0.1 | 55        |
| 38 | Role of the hypothalamus in insulin-independent glucose uptake in peripheral tissues. Brain Research<br>Bulletin, 1991, 27, 501-504.                                                        | 1.4 | 51        |
| 39 | Muscle-Specific Deletion of the Glut4 Glucose Transporter Alters Multiple Regulatory Steps in Glycogen Metabolism. Molecular and Cellular Biology, 2005, 25, 9713-9723.                     | 1.1 | 51        |
| 40 | An enzymatic photometric assay for 2-deoxyglucose uptake in insulin-responsive tissues and 3T3-L1 adipocytes. Analytical Biochemistry, 2011, 412, 9-17.                                     | 1.1 | 50        |
| 41 | DNA Methylation of Intronic Enhancers Directs Tissue-Specific Expression of Steroidogenic Factor 1/Adrenal 4 Binding Protein (SF-1/Ad4BP). Endocrinology, 2011, 152, 2100-2112.             | 1.4 | 50        |
| 42 | Extracellular Signal–Regulated Kinase in the Ventromedial Hypothalamus Mediates Leptin-Induced<br>Glucose Uptake in Red-Type Skeletal Muscle. Diabetes, 2013, 62, 2295-2307.                | 0.3 | 50        |
| 43 | Activation of AMPK-Regulated CRH Neurons in the PVH is Sufficient and Necessary to Induce Dietary Preference for Carbohydrate over Fat. Cell Reports, 2018, 22, 706-721.                    | 2.9 | 50        |
| 44 | Noradrenaline increases glucose transport into brown adipocytes in culture by a mechanism<br>different from that of insulin. Biochemical Journal, 1996, 314, 485-490.                       | 1.7 | 49        |
| 45 | CXCL14 Deficiency in Mice Attenuates Obesity and Inhibits Feeding Behavior in a Novel Environment.<br>PLoS ONE, 2010, 5, e10321.                                                            | 1.1 | 49        |
| 46 | Sympathetic Nerve Activity Maintains an Anti-Inflammatory State in Adipose Tissue in Male Mice by<br>Inhibiting TNF-α Gene Expression in Macrophages. Endocrinology, 2015, 156, 3680-3694.  | 1.4 | 44        |
| 47 | Cross Talk between Angiotensin II Type 1 and Type 2 Receptors: Cellular Mechanism of Angiotensin Type<br>2 Receptor-Mediated Cell Growth Inhibition Hypertension Research, 1999, 22, 67-74. | 1.5 | 43        |
| 48 | Involvement of Bradykinin and Nitric Oxide in Leptin-Mediated Glucose Uptake in Skeletal Muscle.<br>Endocrinology, 2001, 142, 608-612.                                                      | 1.4 | 42        |
| 49 | Ventromedial hypothalamic stimulation accelerates norepinephrine turnover in brown adipose tissue of rats. Life Sciences, 1987, 41, 193-197.                                                | 2.0 | 40        |
| 50 | Ventromedial Hypothalamic Nucleus-Specific Enhancer of Ad4BP/SF-1 Gene. Molecular Endocrinology,<br>2005, 19, 2812-2823.                                                                    | 3.7 | 40        |
| 51 | Gamma-Aminobutyric Acid Signaling in Brown Adipose Tissue Promotes Systemic Metabolic<br>Derangement in Obesity. Cell Reports, 2018, 24, 2827-2837.e5.                                      | 2.9 | 40        |
| 52 | Hypothalamic neuronal circuits regulating hunger-induced taste modification. Nature<br>Communications, 2019, 10, 4560.                                                                      | 5.8 | 39        |
| 53 | SatB2-Expressing Neurons in the Parabrachial Nucleus Encode Sweet Taste. Cell Reports, 2019, 27, 1650-1656.e4.                                                                              | 2.9 | 39        |
| 54 | Activation of Mitogen-Activated Protein Kinase by Norepinephrine in Brown Adipocytes from<br>Rats <sup>1</sup> . Endocrinology, 1997, 138, 248-253.                                         | 1.4 | 38        |

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Crystal Structure of the Ca2+/Calmodulin-dependent Protein Kinase Kinase in Complex with the<br>Inhibitor STO-609. Journal of Biological Chemistry, 2011, 286, 22570-22579.                                                 | 1.6 | 37        |
| 56 | Neurosecretory protein GL stimulates food intake, de novo lipogenesis, and onset of obesity. ELife, 2017, 6, .                                                                                                              | 2.8 | 35        |
| 57 | Interferon-Î <sup>3</sup> Induces AT 2 Receptor Expression in Fibroblasts by Jak/STAT Pathway and Interferon Regulatory Factor-1. Circulation Research, 2000, 86, 233-240.                                                  | 2.0 | 33        |
| 58 | Alpha-synuclein elicits glucose uptake and utilization in adipocytes through the Gab1/PI3K/Akt<br>transduction pathway. Cellular and Molecular Life Sciences, 2013, 70, 1123-1133.                                          | 2.4 | 33        |
| 59 | Decreased Intake of Sucrose Solutions in Orexin Knockout Mice. Journal of Molecular Neuroscience, 2011, 43, 217-224.                                                                                                        | 1.1 | 32        |
| 60 | PDK1-Foxo1 in Agouti-Related Peptide Neurons Regulates Energy Homeostasis by Modulating Food<br>Intake and Energy Expenditure. PLoS ONE, 2011, 6, e18324.                                                                   | 1.1 | 30        |
| 61 | Dexamethasone Induces the GLUT4 Glucose Transporter, and Responses of Glucose Transport to<br>Norepinephrine and Insulin in Primary Cultures of Brown Adipocytes1. Journal of Biochemistry, 1994,<br>115, 1069-1074.        | 0.9 | 29        |
| 62 | Induction of glucose uptake in skeletal muscle by central leptin is mediated by muscle β2-adrenergic<br>receptor but not by AMPK. Scientific Reports, 2017, 7, 15141.                                                       | 1.6 | 29        |
| 63 | Metabolic adaptation of mice in a cool environment. Pflugers Archiv European Journal of Physiology, 2010, 459, 765-774.                                                                                                     | 1.3 | 26        |
| 64 | Intestinal fatty acid infusion modulates food preference as well as calorie intake via the vagal nerve<br>and midbrain–hypothalamic neural pathways in rats. Metabolism: Clinical and Experimental, 2012, 61,<br>1312-1320. | 1.5 | 25        |
| 65 | Role of the α2 subunit of AMP-activated protein kinase and its nuclear localization in mitochondria and energy metabolism-related gene expressions in C2C12 cells. Metabolism: Clinical and Experimental, 2019, 90, 52-68.  | 1.5 | 23        |
| 66 | Dmbx1 is essential in agouti-related protein action. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15514-15519.                                                               | 3.3 | 18        |
| 67 | Metabolic and morphological alterations of brown adipose tissue after sympathetic denervation in rats. Journal of the Autonomic Nervous System, 1986, 15, 197-204.                                                          | 1.9 | 17        |
| 68 | Leptin receptor signaling is required for high-fat diet-induced atrophic gastritis in mice. Nutrition and Metabolism, 2016, 13, 7.                                                                                          | 1.3 | 17        |
| 69 | Unsuppressed lipolysis in adipocytes is linked with enhanced gluconeogenesis and altered bile acid physiology in InsrP1195L/+ mice fed high-fat-diet. Scientific Reports, 2015, 5, 17565.                                   | 1.6 | 14        |
| 70 | Involvement of Bradykinin and Nitric Oxide in Leptin-Mediated Glucose Uptake in Skeletal Muscle. , 0, .                                                                                                                     |     | 12        |
| 71 | Melanin oncentrating hormoneâ€producing neurons in the hypothalamus regulate brown adipose<br>tissue and thus contribute to energy expenditure. Journal of Physiology, 2021, , .                                            | 1.3 | 10        |
| 72 | Aggravation of chemically-induced injury in perfused rat liver by extracellular ATP. Life Sciences, 2000, 66, 2593-2601.                                                                                                    | 2.0 | 7         |

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Leptin, GABA, and Glucose Control. Cell Metabolism, 2013, 18, 304-306.                                                                                                                                                            | 7.2 | 7         |
| 74 | Adrenergic blockade paradoxically increases lipogenic response of brown adipose tissue to sympathetic nerve stimulation. Neuroscience Letters, 1990, 109, 341-346.                                                                | 1.0 | 6         |
| 75 | Importance of Adult Dmbx1 in Long-Lasting Orexigenic Effect of Agouti-Related Peptide.<br>Endocrinology, 2016, 157, 245-257.                                                                                                      | 1.4 | 6         |
| 76 | A combination of dietary fat intake and nicotine exposure enhances CB1 endocannabinoid receptor expression in hypothalamic nuclei in male mice. Neuroscience Letters, 2020, 714, 134550.                                          | 1.0 | 4         |
| 77 | Intracerebroventricular injection of ghrelin decreases wheel running activity in rats. Peptides, 2017, 87, 12-19.                                                                                                                 | 1.2 | 3         |
| 78 | Homeostatic versus hedonic control of carbohydrate selection. Journal of Physiology, 2020, 598, 3831-3844.                                                                                                                        | 1.3 | 3         |
| 79 | Basigin deficiency prevents anaplerosis and ameliorates insulin resistance and hepatosteatosis. JCI<br>Insight, 2021, 6, .                                                                                                        | 2.3 | 3         |
| 80 | Hypothalamic control of glucose and lipid metabolism in skeletal muscle. The Journal of Physical<br>Fitness and Sports Medicine, 2017, 6, 75-87.                                                                                  | 0.2 | 1         |
| 81 | Neuronal Control of Brown Adipose Tissue Thermogenesis During Hyperphagia. , 1986, , 189-198.                                                                                                                                     |     | 0         |
| 82 | Central nervous system regulation of glucose uptake in peripheral tissues. Neuroscience Research<br>Supplement: the Official Journal of the Japan Neuroscience Society, 1992, 17, 299.                                            | 0.0 | 0         |
| 83 | 906 Regulatory mechanism of the ventromedial hypothalamus in enhancing glucose uptake in skeletal<br>muscles of rats. Neuroscience Research Supplement: the Official Journal of the Japan Neuroscience<br>Society, 1993, 18, S96. | 0.0 | 0         |
| 84 | Sympathetic and β3-adrenergic regulation of glucose transport into brown adipocytes and skeletal muscle cells from rats. Experimental and Clinical Endocrinology and Diabetes, 1997, 105, 18-19.                                  | 0.6 | 0         |
| 85 | Hypothalamic regulation of energy metabolism: Lessons from leptin-AMPK system. Autonomic<br>Neuroscience: Basic and Clinical, 2007, 135, 19-20.                                                                                   | 1.4 | 0         |
| 86 | Neural Control of Homeostatic Feeding and Food Selection. , 0, , .                                                                                                                                                                |     | 0         |