Takashi Iwasaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5802877/publications.pdf

Version: 2024-02-01

26 papers 803 citations

686830 13 h-index 25 g-index

28 all docs 28 docs citations

times ranked

28

1059 citing authors

#	Article	IF	CITATIONS
1	<i>In vitro</i> transcytosis of <i>Helicobacter pylori</i> histidine-rich protein through gastric epithelial-like cells and the blood–brain barrier. Bioscience, Biotechnology and Biochemistry, 2022, 86, 321-330.	0.6	1
2	Intracellular delivery and photothermal therapeutic effects of polyhistidine peptide-modified gold nanoparticles. Journal of Biotechnology, 2022, 354, 34-44.	1.9	3
3	The FMRFamide-like peptide FLP-2 is involved in the modulation of larval development and adult lifespan by regulating the secretion of the insulin-like peptide INS-35 in <i>Caenorhabditis elegans</i> Bioscience, Biotechnology and Biochemistry, 2022, 86, 1231-1239.	0.6	2
4	Direct protein delivery into intact plant cells using polyhistidine peptides. Bioscience, Biotechnology and Biochemistry, 2021, 85, 1405-1414.	0.6	7
5	A polylysine–polyhistidine fusion peptide for lysosome-targeted protein delivery. Biochemical and Biophysical Research Communications, 2020, 533, 905-912.	1.0	14
6	Encapsulation of mRNA into Artificial Viral Capsids via Hybridization of a \hat{l}^2 -Annulus-dT20 Conjugate and the Poly(A) Tail of mRNA. Applied Sciences (Switzerland), 2020, 10, 8004.	1.3	13
7	Fluorescent Tau-derived Peptide for Monitoring Microtubules in Living Cells. ACS Omega, 2019, 4, 11245-11250.	1.6	18
8	Stabilization of microtubules by encapsulation of the GFP using a Tau-derived peptide. Chemical Communications, 2019, 55, 9072-9075.	2.2	22
9	Development of Organelle Replacement Therapy Using a Stearyl-Polyhistidine Peptide against Lysosomal Storage Disease Cells. Molecules, 2019, 24, 2995.	1.7	7
10	Molecular delivery into mammalian and plant cells using new cell-penetrating peptide "PolyHis― Japanese Journal of Pesticide Science, 2019, 44, 52-58.	0.0	0
11	Comparison of physiological functions of antagonistic insulin-like peptides, INS-23 and INS-18, in <i>Caenorhabditis elegans</i> <io>li>Caenorhabditis elegans <io>li>Caenor</io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io>	0.6	10
12	Drug delivery using polyhistidine peptide-modified liposomes that target endogenous lysosome. Biochemical and Biophysical Research Communications, 2018, 501, 648-653.	1.0	25
13	Short polyhistidine peptides penetrate effectively into <i>Nicotiana tabacum</i> -cultured cells and <i>Saccharomyces cerevisiae</i> cells. Bioscience, Biotechnology and Biochemistry, 2017, 81, 112-118.	0.6	15
14	Diapause is associated with a change in the polarity of secretion of insulin-like peptides. Nature Communications, 2016, 7, 10573.	5.8	17
15	Cellular uptake and in vivo distribution of polyhistidine peptides. Journal of Controlled Release, 2015, 210, 115-124.	4.8	64
16	RNA Interference-Mediated Growth Control of the Southern Root-Knot NematodeMeloidogyne incognita. Bioscience, Biotechnology and Biochemistry, 2012, 76, 378-380.	0.6	6
17	Anti-Angiogenesis Activities of Novel Peptide Complexes: Mitochondria-Disruptive 9mer Peptides Conjugated with the Integrin alpha V beta 3-Homing Cyclic RGD Motif. Bioscience, Biotechnology and Biochemistry, 2012, 76, 2044-2048.	0.6	4
18	A <i>Caenorhabditis elegans</i> Insulin-Like Peptide, INS-17: Its Physiological Function and Expression Pattern. Bioscience, Biotechnology and Biochemistry, 2012, 76, 2168-2172.	0.6	23

#	Article	IF	CITATIONS
19	Physiological function, expression pattern, and transcriptional regulation of a Caenorhabditis elegans insulin-like peptide, INS-18. Biochemical and Biophysical Research Communications, 2012, 423, 478-483.	1.0	40
20	Development of a Bioactive Fiber with Immobilized Synthetic Peptides Designed from the Active Site of a Beetle Defensin. Biomacromolecules, 2011, 12, 1540-1545.	2.6	21
21	An Altered Method of Feeding RNAi That Knocks Down Multiple Genes Simultaneously in the Nematode <i>Caenorhabditis elegans</i> . Bioscience, Biotechnology and Biochemistry, 2010, 74, 2361-2365.	0.6	15
22	Characteristics of Novel Insect Defensin-Based Membrane-Disrupting Trypanocidal Peptides. Bioscience, Biotechnology and Biochemistry, 2009, 73, 1520-1526.	0.6	11
23	Multiple Functions of Short Synthetic Enantiomeric Peptides Based on Beetle Defensins. Bioscience, Biotechnology and Biochemistry, 2009, 73, 683-687.	0.6	6
24	Selective cancer cell cytotoxicity of enantiomeric 9-mer peptides derived from beetle defensins depends on negatively charged phosphatidylserine on the cell surface. Peptides, 2009, 30, 660-668.	1.2	115
25	A genome-wide analysis of genes and gene families involved in innate immunity of Bombyx mori. Insect Biochemistry and Molecular Biology, 2008, 38, 1087-1110.	1.2	307
26	Gene Expression of a Novel Defensin Antimicrobial Peptide in the Silkworm, <i>Bombyx mori</i> Bioscience, Biotechnology and Biochemistry, 2008, 72, 2353-2361.	0.6	36