
Hussameldin Ibrahim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5802445/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sustainable ternary treatment system for greywater and potential reuse. Canadian Journal of Chemical Engineering, 2023, 101, 1298-1309.	1.7	0
2	Performance evaluation of different macrophytes in smallâ€scale vertical flow constructed wetlands for greywater treatment using principal component analysis. Canadian Journal of Chemical Engineering, 2023, 101, 1321-1334.	1.7	0
3	<scp><i>Eichhornia crassipes</i></scp> as biosorbent for industrial wastewater treatment: Equilibrium and kinetic studies. Canadian Journal of Chemical Engineering, 2022, 100, 439-450.	1.7	9
4	State-of-the-art in methane-reforming reactor modeling: challenges and new insights. Reviews in Chemical Engineering, 2022, 38, 991-1022.	4.4	2
5	Heterogeneous numerical modelling for the auto thermal reforming of crude glycerol in a fixed bed reactor. Chinese Journal of Chemical Engineering, 2022, 42, 261-268.	3.5	1
6	Application of density functional theory and machine learning in heterogenous-based catalytic reactions for hydrogen production. International Journal of Hydrogen Energy, 2022, 47, 2245-2267.	7.1	22
7	Mechanistic Kinetic Modelling Framework for the Conversion of Waste Crude Glycerol to Value-Added Hydrogen-Rich Gas. Catalysts, 2022, 12, 200.	3.5	3
8	A thermodynamic analysis of biogas-to-methanol conversion with CH ₄ recycling and CO ₂ utilization using Aspen HYSYS. Sustainable Energy and Fuels, 2021, 5, 4336-4345.	4.9	14
9	Preliminary study on greywater treatment using water hyacinth. Applied Water Science, 2021, 11, 1.	5.6	10
10	Thermal heterogeneity in the proximity of municipal solid waste landfills on forest and agricultural lands. Journal of Environmental Management, 2021, 287, 112320.	7.8	22
11	Thermodynamic equilibrium analysis of oxyâ€dry reforming of biogas with CO ₂ sequestration using Aspen HYSYS. Asia-Pacific Journal of Chemical Engineering, 2021, 16, e2683.	1.5	4
12	Optimization of hydrogen production via catalytic autothermal reforming of crude glycerol using response surface methodology and artificial neural network. International Journal of Energy Research, 2021, 45, 18999.	4.5	5
13	On the design of sustainable antifouling system for the crossflow filtration of oily water systems: A multicontinuum and CFD investigation of the periodic feed pressure technique. Science of the Total Environment, 2020, 698, 134288.	8.0	10
14	Imidazolium based ionic liquids confined into mesoporous silica MCM-41 and SBA-15 for carbon dioxide capture. Microporous and Mesoporous Materials, 2020, 294, 109916.	4.4	42
15	CFD investigation of biogas reformate using membrane-assisted water gas shift reaction: Parametric analyses. Chemical Engineering Research and Design, 2020, 162, 125-136.	5.6	4
16	Challenges and prospects for the photocatalytic liquefaction of methane into oxygenated hydrocarbons. Renewable and Sustainable Energy Reviews, 2020, 131, 110024.	16.4	23
17	Effect of hydrogenâ€enriched biogas induction on combustion, performance, and emission characteristics of dualâ€fuel compression ignition engine. Asia-Pacific Journal of Chemical Engineering, 2020, 15, e2435.	1.5	2
18	Tea residue as a bio-sorbent for the treatment of textile industry effluents. International Journal of Environmental Science and Technology, 2020, 17, 3351-3364.	3.5	7

#	Article	IF	CITATIONS
19	Valorization of sodium sulfate waste to potassium sulfate fertilizer: experimental studies, process modeling, and optimization. International Journal of Green Energy, 2020, 17, 521-528.	3.8	3
20	Catalytic production of furfural by pressurized liquid water liquefaction of flax straw. Renewable Energy, 2019, 130, 1176-1184.	8.9	14
21	Experimental and kinetic study of the catalytic desorption of CO2 from CO2-loaded monoethanolamine (MEA) and blended monoethanolamine – Methyl-diethanolamine (MEA-MDEA) solutions. Energy, 2019, 179, 475-489.	8.8	36
22	Eley–Rideal model of heterogeneous catalytic carbamate formation based on CO ₂ –MEA absorptions with CaCO ₃ , MgCO ₃ and BaCO ₃ . Royal Society Open Science, 2019, 6, 190311.	2.4	10
23	Markedly improved CO2 uptake using imidazolium-based ionic liquids confined into HKUST-1 frameworks. Microporous and Mesoporous Materials, 2019, 284, 98-110.	4.4	39
24	Investigation of CO2 capture using acetate-based ionic liquids incorporated into exceptionally porous metal–organic frameworks. Adsorption, 2019, 25, 675-692.	3.0	24
25	Metal Oxide-Based Catalysts for the Autothermal Reforming of Glycerol. Industrial & Engineering Chemistry Research, 2018, 57, 2486-2497.	3.7	11
26	Robust power-law kinetic model for the autothermal reforming of glycerol over metal oxide catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2018, 123, 543-557.	1.7	4
27	Mechanistic kinetics and reactor modelling of hydrogen production from the partial oxidation of diesel over a quartenary metal oxide catalyst. Molecular Catalysis, 2018, 451, 255-265.	2.0	5
28	Incorporation of acetate-based ionic liquids into a zeolitic imidazolate framework (ZIF-8) as efficient sorbents for carbon dioxide capture. Chemical Engineering Journal, 2018, 334, 817-828.	12.7	144
29	Autothermal reforming process for efficient hydrogen production from crude glycerol using nickel supported catalyst: Parametric and statistical analyses. Energy, 2018, 144, 129-145.	8.8	40
30	The Effect of Off-Spec Canola Biodiesel Blending on Fuel Properties for Cold Weather Applications. ChemEngineering, 2018, 2, 30.	2.4	6
31	Crude Glycerol as an Innovative Corrosion Inhibitor. Applied System Innovation, 2018, 1, 12.	4.6	10
32	Recent Advances in Supported Metal Catalysts for Syngas Production from Methane. ChemEngineering, 2018, 2, 9.	2.4	38
33	Ternary oxide-supported bimetallic nickel-copper catalysts for a single step high temperature water gas shift of biogas reformate. Fuel, 2018, 234, 1238-1258.	6.4	5
34	Hydrogen Production from Oxygenated Hydrocarbons: Review of Catalyst Development, Reaction Mechanism and Reactor Modeling. , 2017, , 1-76.		2
35	Packed bed reactor modeling of the catalytic auto-thermal reforming of synthetic crude glycerol. Journal of Environmental Chemical Engineering, 2017, 5, 4850-4857.	6.7	7
36	Kinetics of hydrogen production by the autothermal reforming of crude glycerol over modified nickel supported catalyst. Journal of Environmental Chemical Engineering, 2017, 5, 5827-5835.	6.7	17

HUSSAMELDIN IBRAHIM

#	ARTICLE	IF	CITATIONS
37	Thermodynamic Analysis of Autothermal Reforming of Synthetic Crude Glycerol (SCG) for Hydrogen Production. ChemEngineering, 2017, 1, 4.	2.4	15
38	Kinetics and Reactor Modeling of the Steam Reforming of Methanol over a Mnâ€Promoted Cu/Al Catalyst. Chemical Engineering and Technology, 2015, 38, 2305-2315.	1.5	8
39	Kinetic Study of Hydrogen Production by the High Temperature Water Gas Shift Reaction of Reformate Gas in Conventional and Membrane Packed Bed Reactors over Ca-Promoted CeO ₂ –ZrO ₂ Supported Ni–Cu Catalyst. Industrial & Engineering Chemistry Research. 2015. 54. 612-622.	3.7	5
40	Oxygenated hydrocarbons steam reforming over Ni/CeZrGdO 2 catalyst: Kinetics and reactor modeling. Chemical Engineering Science, 2015, 138, 363-374.	3.8	17
41	Catalytic subcritical water liquefaction of flax straw for high yield of furfural. Biomass and Bioenergy, 2014, 71, 381-393.	5.7	25
42	Evaluating the performance of non-precious metal based catalysts for sulfur-tolerance during the dry reforming of biogas. Fuel, 2014, 120, 202-217.	6.4	53
43	Kinetic Study of the Catalytic Partial Oxidation of Synthetic Diesel over 5 wt % Ni/Ce0.5Zr0.33Ca0.085Y0.085O2-δ Catalyst for Hydrogen Production. Energy & Fuels, 2012, 26, 5421-5429.	5.1	9
44	Evaluation of the Catalytic Activity of Various 5Ni/Ce _{0.5} Zr _{0.33} M _{0.17} O _{2-δ} Catalysts for Hydrogen Production by the Steam Reforming of a Mixture of Oxygenated Hydrocarbons. Energy & Fuels, 2012, 26, 816-828.	5.1	18
45	Influence of the Catalyst Preparation Method, Surfactant Amount, and Steam on CO ₂ Reforming of CH ₄ over 5Ni/Ce _{0.6} Zr _{0.4} O ₂ Catalysts. Energy & Fuels, 2011, 25, 864-877.	5.1	98
46	Review of Recent Developments in CO2 Capture Using Solid Materials: Metal Organic Frameworks (MOFs). , 0, , .		17
47	Promising sulfonated carbon-based zirconia catalyst for renewable furfural production. Biomass Conversion and Biorefinery, 0,	4.6	3