Hongyu Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5802156/publications.pdf

Version: 2024-02-01

361413 377865 1,310 61 20 34 citations h-index g-index papers 62 62 62 1118 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The research progress of organic fluorescent probe applied in food and drinking water detection. Coordination Chemistry Reviews, 2021, 427, 213557.	18.8	96
2	Rapidly Responsive and Highly Selective Fluorescent Probe for Bisulfite Detection in Food. Journal of Agricultural and Food Chemistry, 2017, 65, 2883-2887.	5.2	76
3	Highly selective and rapidly responsive fluorescent probe for hydrogen sulfide detection in wine. Food Chemistry, 2018, 257, 150-154.	8.2	71
4	A novel coumarin-based fluorescent probe for sensitive detection of copper(II) in wine. Food Chemistry, 2019, 284, 23-27.	8.2	71
5	Synthesis of Nitriles from Primary Amides or Aldoximes under Conditions of a Catalytic Swern Oxidation. Journal of Organic Chemistry, 2018, 83, 12939-12944.	3.2	69
6	Analysis of volatile compounds in Chinese dry-cured hams by comprehensive two-dimensional gas chromatography with high-resolution time-of-flight mass spectrometry. Meat Science, 2018, 140, 14-25.	5 . 5	65
7	A novel reaction-based fluorescent probe for the detection of cysteine in milk and water samples. Food Chemistry, 2018, 262, 67-71.	8.2	56
8	A dual-site fluorescent probe for separate detection of hydrogen sulfide and bisulfite. Dyes and Pigments, 2019, 160, 757-764.	3.7	54
9	The recent advance of organic fluorescent probe rapid detection for common substances in beverages. Food Chemistry, 2021, 358, 129839.	8.2	53
10	A multiple-detection-point fluorescent probe for the rapid detection of mercury(II), hydrazine and hydrogen sulphide. Dyes and Pigments, 2020, 174, 108056.	3.7	40
11	Highly Sensitive Ratiometric Fluorescent Paper Sensors for the Detection of Fluoride lons. ACS Omega, 2019, 4, 4918-4926.	3. 5	37
12	A dual-function fluorescent probe for discriminative detection of hydrogen sulfide and hydrazine. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 377, 36-42.	3.9	37
13	A rapid and visible colorimetric fluorescent probe for benzenethiol flavor detection. Food Chemistry, 2019, 286, 322-328.	8.2	34
14	A Novel Fluorescent Probe for Detecting Hydrogen Sulfide in Wine. Food Analytical Methods, 2018, 11, 1398-1404.	2.6	30
15	Thymoquinone Inhibits Biofilm Formation and Attachment-Invasion in Host Cells of <i>Vibrio parahaemolyticus</i>). Foodborne Pathogens and Disease, 2019, 16, 671-678.	1.8	30
16	A Fluorescent Probe for Sensitive Detection of Hydrazine and Its Application in Red Wine and Water. Analytical Sciences, 2018, 34, 329-333.	1.6	29
17	A Visible Colorimetric Fluorescent Probe for Hydrogen Sulfide Detection in Wine. Journal of Analytical Methods in Chemistry, 2019, 2019, 1-8.	1.6	29
18	A Reactionâ€Based Novel Fluorescent Probe for Detection of Hydrogen Sulfide and Its Application in Wine. Journal of Food Science, 2018, 83, 108-112.	3.1	27

#	Article	IF	CITATIONS
19	Effects of mixed starter cultures and exogenous L-Lys on the physiochemical and sensory properties of rapid-fermented fish paste using longsnout catfish by-products. LWT - Food Science and Technology, 2019, 108, 21-30.	5.2	27
20	A Highly Selective and Colorimetric Fluorescent Probe for Hydrazine Detection in Water Samples. Analytical Sciences, 2018, 34, 1297-1302.	1.6	24
21	Effect of Partial Substitutes of NaCl on the Cold-Set Gelation of Grass Carp Myofibrillar Protein Mediated by Microbial Transglutaminase. Food and Bioprocess Technology, 2018, 11, 1876-1886.	4.7	20
22	A Highly Efficient Method for the Bromination of Alkenes, Alkynes and Ketones Using Dimethyl Sulfoxide and Oxalyl Bromide. Synthesis, 2018, 50, 4325-4335.	2.3	20
23	Dual-Function Fluorescent Probe for Detection of Hydrogen Sulfide and Water Content in Dimethyl Sulfoxide. ACS Omega, 2019, 4, 10695-10701.	3.5	20
24	One-pot synthesis of (â^')-Ambrox. Scientific Reports, 2016, 6, 32650.	3.3	19
25	A Novel Method for the Chlorolactonization of Alkenoic Acids Using Diphenyl Sulfoxide/Oxalyl Chloride. Synthesis, 2018, 50, 2555-2566.	2.3	18
26	Preparation and aroma analysis of Chinese traditional fermented flour paste. Food Science and Biotechnology, 2014, 23, 49-58.	2.6	17
27	Novel fluorescent probe for the ratiometric detection of \hat{l}^2 -galactosidase and its application in fruit. Food Chemistry, 2020, 328, 127112.	8.2	16
28	A Facile Method for the Sulfenyllactonization of Alkenoic Acids Using Dimethyl Sulfoxide Activated by Oxalyl Chloride. Synthesis, 2017, 49, 1380-1386.	2.3	14
29	Dimethyl sulfoxide/oxalyl chloride: A useful reagent for sulfenyletherification. Synthetic Communications, 2018, 48, 2773-2781.	2.1	14
30	A facile sulfenylchlorination of alkenes with Me2SO/(COCl)2. Synthetic Communications, 2019, 49, 539-549.	2.1	13
31	Convenient Preparation of <i>N</i> -Acylbenzoxazines from Phenols, Nitriles, and DMSO Initiated by a Catalytic Amount of (COCl) ₂ . Journal of Organic Chemistry, 2021, 86, 4932-4943.	3.2	13
32	A colourimetric fluorescent probe for the sensitive detection of total iron in wine. Food Chemistry, 2022, 383, 132594.	8.2	13
33	A Natural Light Visible Colorimetric Responses Fluorescent Probe for Hydrazine Detection. Analytical Sciences, 2020, 36, 323-327.	1.6	11
34	Enantioselective Syntheses and Sensory Properties of 2-Methyl-tetrahydrofuran-3-thiol Acetates. Journal of Agricultural and Food Chemistry, 2015, 63, 464-468.	5 . 2	10
35	Synthesis of butenolides by reactions of 3â€alkenoic acids with diphenyl sulfoxide/oxalyl chloride. Flavour and Fragrance Journal, 2018, 33, 397-404.	2.6	10

Isolation and identification of antibiotic albaflavenone from <i>Dictyophora indusiata</i> (<i>Vent:) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

36

#	Article	IF	Citations
37	Selective catalytic dehydration of furfuryl alcohol to 2, 2′-difurfuryl ether using a polyoxometalate catalyst. Scientific Reports, 2017, 7, 12954.	3.3	9
38	Enantioselective syntheses and sensory properties of 2â€Alkenâ€4â€olides. Flavour and Fragrance Journal, 2018, 33, 166-172.	2.6	9
39	The oxysulfenylation of alkenes with dimethyl sulfoxide/oxalyl chloride. Synthetic Communications, 2019, 49, 2662-2670.	2.1	9
40	Viscoelastic and Functional Properties of Cod-Bone Gelatin in the Presence of Xylitol and Stevioside. Frontiers in Chemistry, 2018, 6, 111.	3.6	8
41	A fluorescent probe for colorimetric detection of bisulfite and application in sugar and red wine. Food Science and Biotechnology, 2019, 28, 983-990.	2.6	8
42	A novel practical preparation of methyl methanethiosulfonate from dimethyl sulfoxide initiated by a catalytic amount of (COCI) ₂ or anhydrous HCl. Journal of Sulfur Chemistry, 2021, 42, 604-613.	2.0	8
43	Discriminative detection of mercury (II) and hydrazine using a dualâ€function fluorescent probe. Luminescence, 2020, 35, 754-762.	2.9	8
44	Dichlorination of olefins with diphenyl sulfoxide/oxalyl chloride. Synthetic Communications, 2020, 50, 2319-2330.	2.1	7
45	Preparation and odour properties of the four stereoisomers of 2â€hexylâ€4â€acetoxytetrahydrofuran. Flavour and Fragrance Journal, 2014, 29, 249-254.	2.6	6
46	Preparation and odor characteristics of nitriles derived from aldehydes. Flavour and Fragrance Journal, 2020, 35, 425-434.	2.6	6
47	A Convenient Method for αâ€Chlorination of 1,3â€Diketones and βâ€Keto Esters with DMSO or Ph ₂ SO/(COCl) ₂ . ChemistrySelect, 2021, 6, 10883-10888.	1.5	6
48	Application of a luminous intensity variation fluorescent probe for the detection of ferric ions. Luminescence, 2022, 37, 803-809.	2.9	6
49	Synthesis and Application of a Naphtholâ€Based Fluorescent Probe for Mercury(II) Detection. ChemistrySelect, 2020, 5, 1683-1687.	1.5	5
50	Preparation and Odour Properties of (S)-3-Mercapto-1-Heptyl Acetate. Journal of Chemical Research, 2014, 38, 343-346.	1.3	4
51	A facile synthesis of \hat{I}^3 -butenolides via cyclization of 3-alkenoic acids with dimethyl sulfoxide and oxalyl bromide. Synthetic Communications, 2019, , 1-7.	2.1	3
52	Preparation and odor characteristics of methylthiomethyl carboxylates. Flavour and Fragrance Journal, 2020, 35, 302-308.	2.6	3
53	A straightforward synthesis of methylenebisamides from amides and DMSO with a substoichiometric amount of (COCl)2. Journal of Molecular Structure, 2022, 1263, 133184.	3.6	3
54	A Fortuitously Straightforward Synthesis of 4-Acetoxy-2-Propyltetrahydrothiophene. Journal of Chemical Research, 2015, 39, 724-726.	1.3	2

Hongyu Tian

#	Article	IF	CITATION
55	Preparation of 3-Methylthiodecanal, a Flavour Compound. Journal of Chemical Research, 2015, 39, 731-733.	1.3	2
56	Enantioselective synthesis and sensory properties of 3â€methylthiodecanal. Flavour and Fragrance Journal, 2017, 32, 165-170.	2.6	2
57	Identification of an unusual byâ€product in the industrial production of 2â€Methylâ€3â€furanthiol. Flavour and Fragrance Journal, 2017, 32, 484-489.	2.6	2
58	Isolation and identification of oxacyclopentadecanâ€2â€one from the dried fruiting body of <i>Dictyophora echinovolvata</i> Zang, Zheng et Hu. Flavour and Fragrance Journal, 2012, 27, 75-76.	2.6	1
59	A Fluorescent Probe for The Visible Colorimetric Detection of Tyrosinase. ChemistrySelect, 2021, 6, 9046-9051.	1.5	1
60	Characterisation of a By-Product Formed in the Industrial Production of \hat{I}^3 -Nonalactone. Journal of Chemical Research, 2016, 40, 141-143.	1.3	0
61	A novel phenylsulfenylation of unsaturated acids or alcohols by methyl phenyl sulfoxide and substoichiometric (COCl)2. Tetrahedron, 2022, 105, 132615.	1.9	O