Matthew S Waitkus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5801690/publications.pdf

Version: 2024-02-01

24 papers 955 citations

759233 12 h-index 713466 21 g-index

24 all docs

24 docs citations

times ranked

24

2137 citing authors

#	Article	IF	CITATIONS
1	Antitumor Activity of a Mitochondrial-Targeted HSP90 Inhibitor in Gliomas. Clinical Cancer Research, 2022, 28, 2180-2195.	7.0	12
2	Targeting Isocitrate Dehydrogenase Mutations in Cancer: Emerging Evidence and Diverging Strategies. Clinical Cancer Research, 2021, 27, 383-388.	7.0	12
3	A Modified Nucleoside 6-Thio-2′-Deoxyguanosine Exhibits Antitumor Activity in Gliomas. Clinical Cancer Research, 2021, 27, 6800-6814.	7.0	10
4	TP53 wild-type/PPM1D mutant diffuse intrinsic pontine gliomas are sensitive to a MDM2 antagonist. Acta Neuropathologica Communications, $2021, 9, 178$.	5.2	8
5	The integrated genomic and epigenomic landscape of brainstem glioma. Nature Communications, 2020, 11, 3077.	12.8	50
6	Targeting Mutant PPM1D Sensitizes Diffuse Intrinsic Pontine Glioma Cells to the PARP Inhibitor Olaparib. Molecular Cancer Research, 2020, 18, 968-980.	3.4	18
7	Non-invasive sensitive brain tumor detection using dual-modality bioimaging nanoprobe. Nanotechnology, 2019, 30, 275101.	2.6	21
8	CRISPR Editing of Mutant IDH1 R132H Induces a CpG Methylation-Low State in Patient-Derived Glioma Models of G-CIMP. Molecular Cancer Research, 2019, 17, 2042-2050.	3.4	15
9	Hereditary brain tumor with a homozygous germline mutation in PMS2: pedigree analysis and prenatal screening in a family with constitutional mismatch repair deficiency (CMMRD) syndrome. Familial Cancer, 2019, 18, 261-265.	1.9	3
10	Sensitive and rapid detection of <i>TERT </i> promoter and <i>IDH </i> mutations in diffuse gliomas. Neuro-Oncology, 2019, 21, 440-450.	1.2	27
11	Adaptive Evolution of the GDH2 Allosteric Domain Promotes Gliomagenesis by Resolving IDH1R132H-Induced Metabolic Liabilities. Cancer Research, 2018, 78, 36-50.	0.9	35
12	GENE-42. THE GENOMIC LANDSCAPE OF TRIPLE-NEGATIVE GLIOBLASTOMA. Neuro-Oncology, 2018, 20, vi112-vi112.	1.2	0
13	TMOD-33. ESTABLISHMENT AND PRELIMINARY EVALUATION OF BEVACIZUMAB-RESISTANT GLIOMA XENOGRAFT MODELS. Neuro-Oncology, 2018, 20, vi275-vi275.	1.2	O
14	GENE-01. THE GENOMIC LANDSCAPE OF TRIPLE-NEGATIVE GLIOBLASTOMA. Neuro-Oncology, 2018, 20, vi102-vi103.	1.2	0
15	The genomic landscape of TERT promoter wildtype-IDH wildtype glioblastoma. Nature Communications, 2018, 9, 2087.	12.8	124
16	Biological Role and Therapeutic Potential of IDH Mutations in Cancer. Cancer Cell, 2018, 34, 186-195.	16.8	234
17	Mutant IDH1 Disrupts the Mouse Subventricular Zone and Alters Brain Tumor Progression. Molecular Cancer Research, 2017, 15, 507-520.	3.4	41
18	<i>Cic</i> Loss Promotes Gliomagenesis via Aberrant Neural Stem Cell Proliferation and Differentiation. Cancer Research, 2017, 77, 6097-6108.	0.9	46

#	Article	IF	CITATION
19	Isocitrate dehydrogenase mutations in gliomas. Neuro-Oncology, 2016, 18, 16-26.	1.2	221
20	Mitogen-Activated Protein Kinase Phosphatase-1 Promotes Neovascularization and Angiogenic Gene Expression. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1020-1031.	2.4	15
21	Signal Integration and Gene Induction by a Functionally Distinct STAT3 Phosphoform. Molecular and Cellular Biology, 2014, 34, 1800-1811.	2.3	35
22	Release of Nonmuscle Myosin II from the Cytosolic Domain of Tumor Necrosis Factor Receptor 2 Is Required for Target Gene Expression. Science Signaling, 2013, 6, ra60.	3.6	6
23	STAT3-mediated Coincidence Detection Regulates Noncanonical Immediate Early Gene Induction. Journal of Biological Chemistry, 2013, 288, 11988-12003.	3.4	11
24	Synergistic Induction of Mitogen-Activated Protein Kinase Phosphatase-1 by Thrombin and Epidermal Growth Factor Requires Vascular Endothelial Growth Factor Receptor-2. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1983-1989.	2.4	11