
Vincenzo Convertito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5801248/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Automated Method for Mapping Independent Spatial <i>b</i> Values. Earth and Space Science, 2022, 9, .	1.1	5
2	Concentrated Slip and Low Rupture Velocity for the May 20, 2012, M W 5.8, Po Plain (Northern Italy) Earthquake Revealed From the Analysis of Source Time Functions. Journal of Geophysical Research: Solid Earth, 2021, 126, .	1.4	1
3	A common source for the destructive earthquakes in the volcanic island of Ischia (Southern Italy): insights from historical and recent seismicity. Natural Hazards, 2021, 108, 177-201.	1.6	9
4	The Signal to Noise Ratio and the Completeness Magnitude: The Effect of the COVID-19 Lockdown. Atmosphere, 2021, 12, 525.	1.0	0
5	Time-Dependent Seismic Hazard Analysis for Induced Seismicity: The Case of St Gallen (Switzerland), Geothermal Field. Energies, 2021, 14, 2747.	1.6	8
6	Geodetic Model of the March 2021 Thessaly Seismic Sequence Inferred from Seismological and InSAR Data. Remote Sensing, 2021, 13, 3410.	1.8	15
7	Pore Fluid Pressure Imaging of the Mt. Pollino Region (Southern Italy) From Earthquake Focal Mechanisms. Geophysical Research Letters, 2021, 48, e2021GL094552.	1.5	8
8	Coincident locations of rupture nucleation during the 2019 Le Teil earthquake, France and maximum stress change from local cement quarrying. Communications Earth & Environment, 2020, 1, .	2.6	12
9	Fluid-Triggered Aftershocks in an Anisotropic Hydraulic Conductivity Geological Complex: The Case of the 2016 Amatrice Sequence, Italy. Frontiers in Earth Science, 2020, 8, .	0.8	12
10	Using ground motion prediction equations to monitor variations in quality factor due to induced seismicity: a feasibility study. Acta Geophysica, 2020, 68, 723-735.	1.0	4
11	Seismogenic Source Model of the 2019, Mw 5.9, East-Azerbaijan Earthquake (NW Iran) through the Inversion of Sentinel-1 DInSAR Measurements. Remote Sensing, 2020, 12, 1346.	1.8	6
12	Site-specific probabilistic seismic hazard analysis for the western area of Naples, Italy. Bulletin of Earthquake Engineering, 2019, 17, 4743-4796.	2.3	21
13	Comment on "The 21 August 2017 MdÂ4.0 Casamicciola Earthquake: First Evidence of Coseismic Normal Surface Faulting at the Ischia Volcanic Island―by Nappi <i>etÂal.</i> (2018). Seismological Research Letters, 2019, 90, 313-315.	0.8	0
14	Clock advance and magnitude limitation through fault interaction: the case of the 2016 central Italy earthquake sequence. Scientific Reports, 2019, 9, 5005.	1.6	19
15	The 21 August 2017 Ischia (Italy) Earthquake Source Model Inferred From Seismological, GPS, and DInSAR Measurements. Geophysical Research Letters, 2018, 45, 2193-2202.	1.5	59
16	Seismic signature of active intrusions in mountain chains. Science Advances, 2018, 4, e1701825.	4.7	34
17	Update, Comparison, and Interpretation of the Groundâ€Motion Prediction Equation for "The Geysers― Geothermal Area in the Light of New Data. Bulletin of the Seismological Society of America, 2018, 108, 3645-3655.	1.1	5
18	Crustal Deformation and Seismicity Modulated by Groundwater Recharge of Karst Aquifers. Geophysical Research Letters, 2018, 45, 12,253.	1.5	35

#	Article	IF	CITATIONS
19	Evidence for Static and Dynamic Triggering of Seismicity Following the 24 August 2016, M WÂ=Â6.0, Amatrice (Central Italy) Earthquake. Pure and Applied Geophysics, 2017, 174, 3663-3672.	0.8	11
20	Temporal evolution of a seismic sequence induced by a gas injection in the Eastern coast of Spain. Scientific Reports, 2017, 7, 2901.	1.6	12
21	Investigating source directivity of moderate earthquakes by multiple approach: the 2013 Matese (southern Italy) <i>M</i> _w Â=Â5 event. Geophysical Journal International, 2016, 207, 1513-1528.	1.0	12
22	Constraints on the Nearâ€Distance Saturation of Groundâ€Motion Amplitudes for Smallâ€ŧoâ€Moderate Induced Earthquakes. Bulletin of the Seismological Society of America, 2016, 106, 2104-2111.	1.1	13
23	Investigating Triggering of the Aftershocks of the 2014 Napa Earthquake. Bulletin of the Seismological Society of America, 2016, 106, 2063-2070.	1.1	6
24	BISTROP: Bayesian Inversion of Spectral‣evel Ratios and <i>P</i> â€Wave Polarities for Focal Mechanism Determination. Seismological Research Letters, 2016, 87, 944-954.	0.8	10
25	Real-Time Mapping of Earthquake Perception Areas in the Italian Region from Twitter Streams Analysis. , 2016, , 619-630.		8
26	Nearâ€Realâ€Time Groundâ€Motion Updating for Earthquake Shaking Prediction. Bulletin of the Seismological Society of America, 2015, 105, 400-408.	1.1	7
27	Groundâ€Motion Prediction Equations for South Korea Peninsula. Bulletin of the Seismological Society of America, 2015, 105, 2625-2640.	1.1	30
28	Earthquake Recurrence. , 2015, , 783-800.		0
29	The 2012 Emilia, Italy, Quasi-Consecutive Triggered Mainshocks: Implications for Seismic Hazard. Seismological Research Letters, 2014, 85, 970-976.	0.8	4
30	Discriminating among distinct source models of the 1908 Messina Straits earthquake by modelling intensity data through full wavefield seismograms. Geophysical Journal International, 2014, 198, 164-173.	1.0	14
31	Source parameter scaling and radiation efficiency of microearthquakes along the Irpinia fault zone in southern Apennines, Italy. Journal of Geophysical Research: Solid Earth, 2014, 119, 3256-3275.	1.4	73
32	Earthquake Recurrence. , 2014, , 1-21.		4
33	Combining stress transfer and source directivity: the case of the 2012 Emilia seismic sequence. Scientific Reports, 2013, 3, 3114.	1.6	24
34	Groundâ€Motion Prediction Equations for The Geysers Geothermal Area based on Induced Seismicity Records. Bulletin of the Seismological Society of America, 2013, 103, 117-130.	1.1	19
35	Predicting Ground Motion from Induced Earthquakes in Geothermal Areas. Bulletin of the Seismological Society of America, 2013, 103, 1875-1897.	1.1	76
36	Fault Extent Estimation for Near-Real-Time Ground-Shaking Map Computation Purposes. Bulletin of the Seismological Society of America, 2012, 102, 661-679.	1.1	23

#	Article	IF	CITATIONS
37	From Induced Seismicity to Direct Time-Dependent Seismic Hazard. Bulletin of the Seismological Society of America, 2012, 102, 2563-2573.	1.1	46
38	Investigating Rupture Direction for Three 2012 Moderate Earthquakes in Northern Italy from Inversion of Peak Ground-Motion Parameters. Bulletin of the Seismological Society of America, 2012, 102, 2764-2770.	1,1	12
39	Assessment of pre-crisis and syn-crisis seismic hazard at Campi Flegrei and Mt. Vesuvius volcanoes, Campania, southern Italy. Bulletin of Volcanology, 2011, 73, 767-783.	1.1	23
40	Engineering design earthquakes from multimodal hazard disaggregation. Soil Dynamics and Earthquake Engineering, 2011, 31, 1212-1231.	1.9	57
41	Ground-motion predictive equations for low-magnitude earthquakes in the Campania–Lucania area, Southern Italy. Journal of Geophysics and Engineering, 2011, 8, 46-60.	0.7	28
42	Earthquake Early Warning System in Southern Italy. , 2011, , 175-201.		1
43	A prototype system for earthquake early-warning and alert management in southern Italy. Bulletin of Earthquake Engineering, 2010, 8, 1105-1129.	2.3	52
44	Rapid estimation of ground-shaking maps for seismic emergency management in the Campania Region of southern Italy. Natural Hazards, 2010, 52, 97-115.	1.6	22
45	Development of a site-conditions map for the Campania-Lucania region (southern Apennines, Italy). Annals of Geophysics, 2010, 53, .	0.5	1
46	Importance of Mapping Design Earthquakes: Insights for the Southern Apennines, Italy. Bulletin of the Seismological Society of America, 2009, 99, 2979-2991.	1.1	21
47	Earthquake early warning system in southern Italy: Methodologies and performance evaluation. Geophysical Research Letters, 2009, 36, .	1.5	124
48	Earthquake Early Warning System in Southern Italy. , 2009, , 2395-2421.		10
49	Prediction of response spectra via real-time earthquake measurements. Soil Dynamics and Earthquake Engineering, 2008, 28, 492-505.	1.9	27
50	An Advanced Seismic Network in the Southern Apennines (Italy) for Seismicity Investigations and Experimentation with Earthquake Early Warning. Seismological Research Letters, 2007, 78, 622-634.	0.8	58
51	Development and Testing of an Advanced Monitoring Infrastructure (ISNet) for Seismic Early-warning Applications in the Campania Region of Southern Italy. , 2007, , 325-341.		22
52	A Strong Motion Attenuation Relation for Early-warning Application in the Campania Region (Southern Apennines). , 2007, , 133-152.		3
53	The Crywolf Issue in Earthquake Early Warning Applications for the Campania Region. , 2007, , 211-232.		5
54	Seismic-Hazard Assessment for a Characteristic Earthquake Scenario: An Integrated Probabilistic-Deterministic Method. Bulletin of the Seismological Society of America, 2006, 96, 377-391.	1.1	45

#	Article	IF	CITATIONS
55	Reply to "Comment on 'Influence of Focal Mechanism in Probabilistic Seismic Hazard Analysis' by Vincenzo Convertito and Andre Herrero," by F. O. Strasser, V. Montaldo, J. Douglas, and J. J. Bommer. Bulletin of the Seismological Society of America, 2006, 96, 754-756.	1.1	1
56	REAL-TIME RISK ANALYSIS FOR HYBRID EARTHQUAKE EARLY WARNING SYSTEMS. Journal of Earthquake Engineering, 2006, 10, 867-885.	1.4	38
57	Influence of Focal Mechanism in Probabilistic Seismic Hazard Analysis. Bulletin of the Seismological Society of America, 2004, 94, 2124-2136.	1.1	21