
Shripad N Surwase

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5801107/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Application Studies of Purified Tyrosinase from Isolated <i>Aeromonas</i> sp. SNS with Detailed Characterization and Kinetic Studies. Journal of Biologically Active Products From Nature, 2020, 10, 233-249.	0.1	1
2	Synthesis of Melanin Mediated Silver Nanoparticles from Aeromonas sp. SNS Using Response Surface Methodology: Characterization with the Biomedical Applications and Photocatalytic Degradation of Brilliant Green. Journal of Polymers and the Environment, 2019, 27, 2428-2438.	2.4	15
3	An Organic Bipolar Resistive Switching Memory Device Based on Natural Melanin Synthesized From <i>Aeromonas</i> sp. SNS. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800550.	0.8	34
4	Evaluation of Various Factors Affecting Bioconversion of I-Tyrosine to I-DOPA by Yeast Yarrowia lipolytica-NCIM 3450 Using Response Surface Methodology. Natural Products and Bioprospecting, 2014, 4, 141-147.	2.0	6
5	Optimization of melanin production by Brevundimonas sp. SGJ using response surface methodology. 3 Biotech, 2013, 3, 187-194.	1.1	43
6	Response surface methodology mediated optimization of Remazol Orange decolorization in plain distilled water by Pseudomonas aeruginosa BCH. International Journal of Environmental Science and Technology, 2013, 10, 181-190.	1.8	43
7	Optimization of medium using response surface methodology for I-DOPA production by Pseudomonas sp. SSA. Biochemical Engineering Journal, 2013, 74, 36-45.	1.8	23
8	Optimization of Biotransformation of l-Tyrosine to l-DOPA by Yarrowia lipolytica-NCIM 3472 Using Response Surface Methodology. Indian Journal of Microbiology, 2013, 53, 194-198.	1.5	7
9	Statistically optimized biotransformation protocol for continuous production of L-DOPA using Mucuna monosperma callus culture. SpringerPlus, 2013, 2, 570.	1.2	14
10	Biological sources of L-DOPA: An alternative approach. Advances in Parkinson S Disease, 2013, 02, 81-87.	0.2	26
11	Effectual decolorization and detoxification of triphenylmethane dye malachite green (MG) by Pseudomonas aeruginosa NCIM 2074 and its enzyme system. Clean Technologies and Environmental Policy, 2012, 14, 989-1001.	2.1	36
12	Optimization of <scp>l</scp> â€ <scp>DOPA</scp> production by <i><scp>B</scp>revundimonas</i> sp. <scp>SGJ</scp> using response surface methodology. Microbial Biotechnology, 2012, 5, 731-737.	2.0	31
13	Efficient Microbial Conversion of I-Tyrosine to I-DOPA by Brevundimonas sp. SGJ. Applied Biochemistry and Biotechnology, 2012, 167, 1015-1028.	1.4	26
14	Biodecolorization of Azo Dye Remazol Orange by Pseudomonas aeruginosa BCH and Toxicity (Oxidative) Tj ETQq 1319-1334.	0 0 0 rgBT 1.4	/Overlock 1 24
15	Bioremediation Perspective of Navy Blue Rx–Containing Textile Effluent by Bacterial Isolate. Bioremediation Journal, 2012, 16, 185-194.	1.0	5
16	Ecofriendly degradation, decolorization and detoxification of textile effluent by a developed bacterial consortium. Ecotoxicology and Environmental Safety, 2011, 74, 1288-1296.	2.9	130
17	Bioconversion of l-tyrosine to l-DOPA by a novel bacterium Bacillus sp. JPJ. Amino Acids, 2011, 41, 495-506.	1.2	66