
Michael Nevels

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5801104/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	World Society for Virology first international conference: Tackling global virus epidemics. Virology, 2022, 566, 114-121.	1.1	2
2	Editorial: Cytomegalovirus Pathogenesis and Host Interactions. Frontiers in Cellular and Infection Microbiology, 2021, 11, 711551.	1.8	0
3	Human Cytomegalovirus Genomes Survive Mitosis via the IE19 Chromatin-Tethering Domain. MBio, 2020, 11, .	1.8	7
4	Revisiting promyelocytic leukemia protein targeting by human cytomegalovirus immediate-early protein 1. PLoS Pathogens, 2020, 16, e1008537.	2.1	16
5	Bright and Early: Inhibiting Human Cytomegalovirus by Targeting Major Immediate-Early Gene Expression or Protein Function. Viruses, 2020, 12, 110.	1.5	38
6	Viral DNA Binding Protein SUMOylation Promotes PML Nuclear Body Localization Next to Viral Replication Centers. MBio, 2020, 11, .	1.8	20
7	Evidence for Tethering of Human Cytomegalovirus Genomes to Host Chromosomes. Frontiers in Cellular and Infection Microbiology, 2020, 10, 577428.	1.8	7
8	Modular cell-based platform for high throughput identification of compounds that inhibit a viral interferon antagonist of choice. Antiviral Research, 2018, 150, 79-92.	1.9	13
9	Non-canonical Activation of the DNA Sensing Adaptor STING by ATM and IFI16 Mediates NF-κB Signaling after Nuclear DNA Damage. Molecular Cell, 2018, 71, 745-760.e5.	4.5	417
10	Human Cytomegalovirus Immediate Early 1 Protein Causes Loss of SOX2 from Neural Progenitor Cells by Trapping Unphosphorylated STAT3 in the Nucleus. Journal of Virology, 2018, 92, .	1.5	20
11	Impact of human cytomegalovirus on glioblastoma cell viability and chemotherapy treatment. Journal of General Virology, 2018, 99, 1274-1285.	1.3	3
12	Launching a Global Network of Virologists: The World Society for Virology (WSV). Intervirology, 2017, 60, 276-277.	1.2	3
13	Human cytomegalovirus IE1 downregulates Hes1 in neural progenitor cells as a potential E3 ubiquitin ligase. PLoS Pathogens, 2017, 13, e1006542.	2.1	38
14	ARID3B: a Novel Regulator of the Kaposi's Sarcoma-Associated Herpesvirus Lytic Cycle. Journal of Virology, 2016, 90, 9543-9555.	1.5	10
15	Human Cytomegalovirus Immediate-Early 1 Protein Rewires Upstream STAT3 to Downstream STAT1 Signaling Switching an IL6-Type to an IFNÎ ³ -Like Response. PLoS Pathogens, 2016, 12, e1005748.	2.1	40
16	The proteome of human cytomegalovirus virions and dense bodies is conserved across different strains. Medical Microbiology and Immunology, 2015, 204, 285-293.	2.6	29
17	Human Cytomegalovirus Major Immediate Early 1 Protein Targets Host Chromosomes by Docking to the Acidic Pocket on the Nucleosome Surface. Journal of Virology, 2014, 88, 1228-1248.	1.5	35
18	Determination of the Transforming Activities of Adenovirus Oncogenes. Methods in Molecular Biology, 2014, 1089, 105-115.	0.4	6

MICHAEL NEVELS

#	Article	IF	CITATIONS
19	Snapshots: Chromatin control of viral infection. Virology, 2013, 435, 141-156.	1.1	133
20	Human Cytomegalovirus IE1 Protein Disrupts Interleukin-6 Signaling by Sequestering STAT3 in the Nucleus. Journal of Virology, 2013, 87, 10763-10776.	1.5	58
21	Nucleosome maps of the human cytomegalovirus genome reveal a temporal switch in chromatin organization linked to a major IE protein. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13126-13131.	3.3	43
22	Histone H3 Lysine 4 Methylation Marks Postreplicative Human Cytomegalovirus Chromatin. Journal of Virology, 2012, 86, 9817-9827.	1.5	24
23	The multi-targeted kinase inhibitor sorafenib inhibits human cytomegalovirus replication. Cellular and Molecular Life Sciences, 2011, 68, 1079-1090.	2.4	33
24	How to control an infectious bead string: nucleosomeâ€based regulation and targeting of herpesvirus chromatin. Reviews in Medical Virology, 2011, 21, 154-180.	3.9	39
25	Human Cytomegalovirus IE1 Protein Elicits a Type II Interferon-Like Host Cell Response That Depends on Activated STAT1 but Not Interferon-γ. PLoS Pathogens, 2011, 7, e1002016.	2.1	60
26	Chromatinisation of herpesvirus genomes. Reviews in Medical Virology, 2010, 20, 34-50.	3.9	38
27	The Human Cytomegalovirus Major Immediate-Early Proteins as Antagonists of Intrinsic and Innate Antiviral Host Responses. Viruses, 2009, 1, 760-779.	1.5	54
28	Activation of Telomerase in Glioma Cells by Human Cytomegalovirus: Another Piece of the Puzzle. Journal of the National Cancer Institute, 2009, 101, 441-443.	3.0	14
29	Physical Requirements and Functional Consequences of Complex Formation between the Cytomegalovirus IE1 Protein and Human STAT2. Journal of Virology, 2009, 83, 12854-12870.	1.5	61
30	Temporal Dynamics of Cytomegalovirus Chromatin Assembly in Productively Infected Human Cells. Journal of Virology, 2008, 82, 11167-11180.	1.5	108
31	Erreger-induzierte Tumoren. , 2008, , 53-66.		Ο
32	Determination of the Transforming Activities of Adenovirus Oncogenes. Methods in Molecular Medicine, 2007, 131, 187-195.	0.8	4
33	A human cytomegalovirus antagonist of type I IFN-dependent signal transducer and activator of transcription signaling. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3840-3845.	3.3	167
34	Human cytomegalovirus immediate-early 1 protein facilitates viral replication by antagonizing histone deacetylation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17234-17239.	3.3	171
35	SUMOylation of the Human Cytomegalovirus 72-Kilodalton IE1 Protein Facilitates Expression of the 86-Kilodalton IE2 Protein and Promotes Viral Replication. Journal of Virology, 2004, 78, 7803-7812.	1.5	70
36	Murine Cytomegalovirus m41 Open Reading Frame Encodes a Golgi-Localized Antiapoptotic Protein. Journal of Virology, 2003, 77, 11633-11643.	1.5	50

MICHAEL NEVELS

#	Article	IF	CITATIONS
37	"Hit-and-Run―Transformation by Adenovirus Oncogenes. Journal of Virology, 2001, 75, 3089-3094.	1.5	114
38	An Ovine Adenovirus Vector Lacks Transforming Ability in Cells That Are Transformed by AD5 E1A/B Sequences. Virology, 2000, 270, 162-172.	1.1	16
39	Two Distinct Activities Contribute to the Oncogenic Potential of the Adenovirus Type 5 E4orf6 Protein. Journal of Virology, 2000, 74, 5168-5181.	1.5	47
40	Two Distinct Activities Contribute to the Oncogenic Potential of the Adenovirus Type 5 E4orf6 Protein. Journal of Virology, 2000, 74, 5168-5181.	1.5	8
41	Quantitation of β-Galactosidase from Yeast Cells Using a Chemiluminescent Substrate. BioTechniques, 1999, 26, 57-58.	0.8	8
42	The adenovirus E4orf6 protein contributes to malignant transformation by antagonizing E1A-induced accumulation of the tumor suppressor protein p53. Oncogene, 1999, 18, 9-17.	2.6	53
43	Transforming Potential of the Adenovirus Type 5 E4orf3 Protein. Journal of Virology, 1999, 73, 1591-1600.	1.5	75
44	The adenovirus E4orf6 protein can promote E1A/E1B-induced focus formation by interfering with p53 tumor suppressor function. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 1206-1211.	3.3	129
45	Structural analysis of the adenovirus type 5 E1B 55-kilodalton-E4orf6 protein complex. Journal of Virology, 1997, 71, 1115-1123.	1.5	96

Determination of the Transforming Activities of Adenovirus Oncogenes. , 0, , 187-196.

0