Paul L Chariou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5801094/publications.pdf

Version: 2024-02-01

566801 940134 16 660 15 16 citations h-index g-index papers 16 16 16 1004 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Nanocarriers for the Delivery of Medical, Veterinary, and Agricultural Active Ingredients. ACS Nano, 2020, 14, 2678-2701.	7.3	113
2	Delivery of Pesticides to Plant Parasitic Nematodes Using Tobacco Mild Green Mosaic Virus as a Nanocarrier. ACS Nano, 2017, 11, 4719-4730.	7. 3	77
3	Physalis Mottle Virus-Like Particles as Nanocarriers for Imaging Reagents and Drugs. Biomacromolecules, 2017, 18, 4141-4153.	2.6	63
4	Soil mobility of synthetic and virus-based model nanopesticides. Nature Nanotechnology, 2019, 14, 712-718.	15.6	59
5	Detection and Imaging of Aggressive Cancer Cells Using an Epidermal Growth Factor Receptor (EGFR)-Targeted Filamentous Plant Virus-Based Nanoparticle. Bioconjugate Chemistry, 2015, 26, 262-269.	1.8	50
6	Remodeling the tumor microenvironment via blockade of LAIR-1 and TGF- \hat{l}^2 signaling enables PD-L1 \hat{a} €"mediated tumor eradication. Journal of Clinical Investigation, 2022, 132, .	3.9	50
7	Tumour-targeted interleukin-12 and entinostat combination therapy improves cancer survival by reprogramming the tumour immune cell landscape. Nature Communications, 2021, 12, 5151.	5.8	41
8	Active Microneedle Administration of Plant Virus Nanoparticles for Cancer In Situ Vaccination Improves Immunotherapeutic Efficacy. ACS Applied Nano Materials, 2020, 3, 8037-8051.	2.4	34
9	Diffusion and Uptake of Tobacco Mosaic Virus as Therapeutic Carrier in Tumor Tissue: Effect of Nanoparticle Aspect Ratio. Journal of Physical Chemistry B, 2016, 120, 6120-6129.	1.2	31
10	Fluorinated polymer–photosensitizer conjugates enable improved generation of ROS for anticancer photodynamic therapy. Polymer Chemistry, 2017, 8, 3195-3202.	1.9	27
11	Site-Specific Antibody Conjugation Strategy to Functionalize Virus-Based Nanoparticles. Bioconjugate Chemistry, 2020, 31, 1408-1416.	1.8	27
12	Plant Viruses and Bacteriophage-Based Reagents for Diagnosis and Therapy. Annual Review of Virology, 2020, 7, 559-587.	3.0	25
13	Tobacco Mosaic Virus-Functionalized Mesoporous Silica Nanoparticles, a Wool-Ball-like Nanostructure for Drug Delivery. Langmuir, 2019, 35, 203-211.	1.6	19
14	<i>In situ</i> vaccine application of inactivated CPMV nanoparticles for cancer immunotherapy. Materials Advances, 2021, 2, 1644-1656.	2.6	19
15	Let There Be Light: Targeted Photodynamic Therapy Using High Aspect Ratio Plant Viral Nanoparticles. Macromolecular Bioscience, 2019, 19, e1800407.	2.1	18
16	Inactivated Plant Viruses as an Agrochemical Delivery Platform. ACS Agricultural Science and Technology, 2021, 1, 124-130.	1.0	7