Jacobus P Petzer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5800819/publications.pdf Version: 2024-02-01

		145106	175968
113	3,690	33	55
papers	citations	h-index	g-index
113	113	113	3950
all docs	docs citations	times ranked	citing authors

IACOBILS D DETZED

#	Article	IF	CITATIONS
1	Phenothiazine, anthraquinone and related tricyclic derivatives as inhibitors of monoamine oxidase. Bioorganic and Medicinal Chemistry, 2022, 54, 116558.	1.4	5
2	Coumarin derivatives as inhibitors of d-amino acid oxidase and monoamine oxidase. Bioorganic Chemistry, 2022, 123, 105791.	2.0	10
3	The evaluation of N-propargylamine-2-aminotetralin as an inhibitor of monoamine oxidase. Bioorganic and Medicinal Chemistry Letters, 2022, 67, 128746.	1.0	3
4	An updated patent review on monoamine oxidase (MAO) inhibitors. Expert Opinion on Therapeutic Patents, 2022, 32, 849-883.	2.4	12
5	Design, synthesis and evaluation of 3-hydroxypyridin-4-ones as inhibitors of catechol-O-methyltransferase. Molecular Diversity, 2021, 25, 753-762.	2.1	5
6	The evaluation of 1-tetralone and 4-chromanone derivatives as inhibitors of monoamine oxidase. Molecular Diversity, 2021, 25, 491-507.	2.1	6
7	Interactions of dye compounds that are structurally related to methylene blue with acetylcholinesterase and butyrylcholinesterase. Chemical Biology and Drug Design, 2021, 97, 854-864.	1.5	3
8	Investigation of pyrazolo[1,5-a]quinoxalin-4-ones as novel monoamine oxidase inhibitors. Bioorganic Chemistry, 2021, 108, 104563.	2.0	7
9	Methylene blue analogues: In vitro antimicrobial minimum inhibitory concentrations and in silico pharmacophore modelling. European Journal of Pharmaceutical Sciences, 2021, 157, 105603.	1.9	14
10	Betulin, a Newly Characterized Compound in Acacia auriculiformis Bark, Is a Multi-Target Protein Kinase Inhibitor. Molecules, 2021, 26, 4599.	1.7	5
11	The inhibition of catechol O-methyltransferase and monoamine oxidase by tetralone and indanone derivatives substituted with the nitrocatechol moiety. Bioorganic Chemistry, 2021, 114, 105130.	2.0	2
12	The monoamine oxidase inhibition properties of C6- and N1-substituted 3-methyl-3,4-dihydroquinazolin-2(1H)-one derivatives. Molecular Diversity, 2020, 24, 391-406.	2.1	4
13	Monoamine oxidase inhibition by selected dye compounds. Chemical Biology and Drug Design, 2020, 95, 355-367.	1.5	4
14	Synthesis and evaluation of 7-azaindole derivatives bearing benzocycloalkanone motifs as protein kinase inhibitors. Bioorganic and Medicinal Chemistry, 2020, 28, 115468.	1.4	8
15	Evaluation of nitrocatechol chalcone and pyrazoline derivatives as inhibitors of catechol-O-methyltransferase and monoamine oxidase. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127188.	1.0	18
16	Evaluation of Selected Natural Compounds as Dual Inhibitors of Catechol-O-Methyltransferase and Monoamine Oxidase. Central Nervous System Agents in Medicinal Chemistry, 2019, 19, 133-145.	0.5	16
17	Optimization of pyrrolo[3,4―f]indoleâ€5,7â€dione and indoleâ€5,6â€dicarbonitrile derivatives as inhibitors of monoamine oxidase. Drug Development Research, 2019, 80, 970-980.	1.4	3
18	1,3,4-Oxadiazol-2-ylbenzenesulfonamides as privileged structures for the inhibition of monoamine oxidase B. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 126677.	1.0	16

#	Article	IF	CITATIONS
19	Benzo[<i>b</i>]tiophen-3-ol derivatives as effective inhibitors of human monoamine oxidase: design, synthesis, and biological activity. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 1511-1525.	2.5	18
20	Monoamine Oxidase Inhibition by Kavalactones from Kava (Piper Methysticum). Planta Medica, 2019, 85, 1136-1142.	0.7	11
21	Synthesis and evaluation of chromone derivatives as inhibitors of monoamine oxidase. Molecular Diversity, 2019, 23, 897-913.	2.1	21
22	SAR and molecular mechanism studies of monoamine oxidase inhibition by selected chalcone analogs. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 863-876.	2.5	40
23	4-(3-Nitrophenyl)thiazol-2-ylhydrazone derivatives as antioxidants and selective hMAO-B inhibitors: synthesis, biological activity and computational analysis. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 597-612.	2.5	37
24	Design, Synthesis, Docking Studies and Monoamine Oxidase Inhibition of a Small Library of 1-acetyl- and 1-thiocarbamoyl-3,5-diphenyl-4,5-dihydro-(1H)-pyrazoles. Molecules, 2019, 24, 484.	1.7	21
25	The monoamine oxidase inhibition properties of C6-mono- and N3/C6-disubstituted derivatives of 4(3H)-quinazolinone. Bioorganic Chemistry, 2019, 85, 60-65.	2.0	6
26	Novel monoamine oxidase inhibitors based on the privileged 2-imidazoline molecular framework. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 40-46.	1.0	32
27	An investigation of the monoamine oxidase inhibition properties of pyrrolo[3,4â€ <i>f</i>]indoleâ€5,7â€dione and indoleâ€5,6â€dicarbonitrile derivatives. Drug Development Research, 2018, 79, 81-93.	1.4	8
28	Development of novel techniques to extract phenolic compounds from Romanian cultivars of Prunus domestica L. and their biological properties. Food and Chemical Toxicology, 2018, 119, 189-198.	1.8	40
29	Design, synthesis and biochemical evaluation of novel multi-target inhibitors as potential anti-Parkinson agents. European Journal of Medicinal Chemistry, 2018, 143, 1543-1552.	2.6	40
30	Nitrocatechol Derivatives of Chalcone as Inhibitors of Monoamine Oxidase and Catechol-O-Methyltransferase. Central Nervous System Agents in Medicinal Chemistry, 2018, 18, 115-127.	0.5	12
31	Synthesis and evaluation of 2-substituted 4(3H)-quinazolinone thioether derivatives as monoamine oxidase inhibitors. Bioorganic and Medicinal Chemistry, 2018, 26, 5531-5537.	1.4	23
32	Synthesis and in vitro Evaluation of 2-heteroarylidene-1-tetralone Derivatives as Monoamine Oxidase Inhibitors. Drug Research, 2018, 68, 687-695.	0.7	11
33	Methylene Blue Analogues with Marginal Monoamine Oxidase Inhibition Retain Antidepressant-like Activity. ACS Chemical Neuroscience, 2018, 9, 2917-2928.	1.7	18
34	A Review of the Pharmacological Properties of 3,4-dihydro-2(1H)- quinolinones. Mini-Reviews in Medicinal Chemistry, 2018, 18, 828-836.	1.1	11
35	Synthesis and Evaluation of 2-benzylidene-1-tetralone Derivatives for Monoamine Oxidase Inhibitory Activity. Central Nervous System Agents in Medicinal Chemistry, 2018, 18, 136-149.	0.5	9
36	The evaluation of 1,4-benzoquinones as inhibitors of human monoamine oxidase. European Journal of Medicinal Chemistry, 2017, 135, 196-203.	2.6	17

#	Article	IF	CITATIONS
37	The monoamine oxidase inhibition properties of selected structural analogues of methylene blue. Toxicology and Applied Pharmacology, 2017, 325, 1-8.	1.3	22
38	C6- and C7-Substituted 3,4-dihydro-2(1H)-quinolinones as Inhibitors of Monoamine Oxidase. Drug Research, 2017, 67, 170-178.	0.7	3
39	Methylene blue and its analogues as antidepressant compounds. Metabolic Brain Disease, 2017, 32, 1357-1382.	1.4	35
40	Benzyloxynitrostyrene analogues – A novel class of selective and highly potent inhibitors of monoamine oxidase B. European Journal of Medicinal Chemistry, 2017, 125, 1193-1199.	2.6	9
41	The Design and Evaluation of an l-Dopa–Lazabemide Prodrug for the Treatment of Parkinson's Disease. Molecules, 2017, 22, 2076.	1.7	9
42	Structural Exploration of Synthetic Chromones as Selective MAO-B Inhibitors: A Mini Review. Combinatorial Chemistry and High Throughput Screening, 2017, 20, 522-532.	0.6	30
43	Evaluation of Natural and Synthetic 1,4â€naphthoquinones as Inhibitors of Monoamine Oxidase. Chemical Biology and Drug Design, 2016, 87, 737-746.	1.5	19
44	2-Benzylidene-1-indanone derivatives as inhibitors of monoamine oxidase. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4599-4605.	1.0	33
45	2-Heteroarylidene-1-indanone derivatives as inhibitors of monoamine oxidase. Bioorganic Chemistry, 2016, 69, 20-28.	2.0	28
46	Inhibition of Human Monoamine Oxidase: Biological and Molecular Modeling Studies on Selected Natural Flavonoids. Journal of Agricultural and Food Chemistry, 2016, 64, 9004-9011.	2.4	74
47	Discovery of 1,3-diethyl-7-methyl-8-(phenoxymethyl)-xanthine derivatives as novel adenosine A 1 and A 2A receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 5951-5955.	1.0	11
48	Carbamate substituted 2-amino-4,6-diphenylpyrimidines as adenosine receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 734-738.	1.0	12
49	An evaluation of synthetic indole derivatives as inhibitors of monoamine oxidase. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2214-2219.	1.0	15
50	Kaempferol as Selective Human MAO-A Inhibitor: Analytical Detection in Calabrian Red Wines, Biological and Molecular Modeling Studies. Journal of Agricultural and Food Chemistry, 2016, 64, 1394-1400.	2.4	56
51	Inhibition of monoamine oxidase by benzoxathiolone analogues. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 1200-1204.	1.0	17
52	Indanones As Highâ€Potency Reversible Inhibitors of Monoamine Oxidase. ChemMedChem, 2015, 10, 862-873.	1.6	84
53	2-acetylphenol analogs as potent reversible monoamine oxidase inhibitors. Drug Design, Development and Therapy, 2015, 9, 3635.	2.0	17
54	3-Coumaranone derivatives as inhibitors of monoamine oxidase. Drug Design, Development and Therapy, 2015, 9, 5479.	2.0	6

#	Article	IF	CITATIONS
55	The Synthesis and Evaluation of C7â€&ubstituted <i>î±</i> â€Tetralone Derivatives as Inhibitors of Monoamine Oxidase. Chemical Biology and Drug Design, 2015, 86, 895-904.	1.5	13
56	Inhibition of monoamine oxidase by indole-5,6-dicarbonitrile derivatives. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 1206-1211.	1.0	24
57	The synthesis and evaluation of sesamol and benzodioxane derivatives as inhibitors of monoamine oxidase. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 1896-1900.	1.0	19
58	The adenosine receptor affinities and monoamine oxidase B inhibitory properties of sulfanylphthalimide analogues. Bioorganic Chemistry, 2015, 59, 117-123.	2.0	16
59	Monoamine oxidase inhibitory activities of heterocyclic chalcones. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5270-5276.	1.0	55
60	2-Aminopyrimidines as dual adenosine A1/A2A antagonists. European Journal of Medicinal Chemistry, 2015, 104, 177-188.	2.6	25
61	Novel monoamine oxidase inhibitors: a patent review (2012 – 2014). Expert Opinion on Therapeutic Patents, 2015, 25, 91-110.	2.4	77
62	Caffeine as a Lead Compound for the Design of Therapeutic Agents for the Treatment of Parkinson's Disease. Current Medicinal Chemistry, 2015, 22, 975-988.	1.2	32
63	Multifunctional Enzyme Inhibition for Neuroprotection - A Focus on MAO, NOS, and AChE Inhibitors. , 2014, , 291-365.		0
64	Inhibition of monoamine oxidase by selected phenylalkylcaffeine analogues. Journal of Pharmacy and Pharmacology, 2014, 66, 677-687.	1.2	17
65	Polycyclic propargylamine and acetylene derivatives as multifunctional neuroprotective agents. European Journal of Medicinal Chemistry, 2014, 80, 122-134.	2.6	27
66	The interactions of azure B, a metabolite of methylene blue, with acetylcholinesterase and butyrylcholinesterase. Toxicology and Applied Pharmacology, 2014, 274, 488-493.	1.3	25
67	Azure B and a synthetic structural analogue of methylene blue, ethylthioninium chloride, present with antidepressant-like properties. Life Sciences, 2014, 117, 56-66.	2.0	18
68	α-Tetralone derivatives as inhibitors of monoamine oxidase. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 2758-2763.	1.0	43
69	New insights into the biological properties of Crocus sativus L.: chemical modifications, human monoamine oxidases inhibition and molecular modeling studies. European Journal of Medicinal Chemistry, 2014, 82, 164-171.	2.6	55
70	Selected furanochalcones as inhibitors of monoamine oxidase. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 4985-4989.	1.0	65
71	Inhibition of monoamine oxidase by 3,4-dihydro-2(1H)-quinolinone derivatives. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 5498-5502.	1.0	31
72	The adenosine A2A antagonistic properties of selected C8-substituted xanthines. Bioorganic Chemistry, 2013, 49, 49-58.	2.0	26

#	Article	IF	CITATIONS
73	The interactions of caffeine with monoamine oxidase. Life Sciences, 2013, 93, 283-287.	2.0	58
74	Exploring 4-substituted-2-thiazolylhydrazones from 2-, 3-, and 4-acetylpyridine as selective and reversible hMAO-B inhibitors. European Journal of Medicinal Chemistry, 2013, 66, 221-227.	2.6	24
75	Inhibition of monoamine oxidase by phthalide analogues. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 1269-1273.	1.0	22
76	Selected C7-substituted chromone derivatives as monoamine oxidase inhibitors. Bioorganic Chemistry, 2012, 45, 1-11.	2.0	52
77	Novel sulfanylphthalimide analogues as highly potent inhibitors of monoamine oxidase B. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 6632-6635.	1.0	6
78	Sulfanylphthalonitrile analogues as selective and potent inhibitors of monoamine oxidase B. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 7367-7370.	1.0	10
79	Inhibition of monoamine oxidase by 8-phenoxymethylcaffeine derivatives. Bioorganic and Medicinal Chemistry, 2012, 20, 4336-4347.	1.4	17
80	Selected chromone derivatives as inhibitors of monoamine oxidase. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 5480-5484.	1.0	41
81	Inhibition of monoamine oxidase by 8-[(phenylethyl)sulfanyl]caffeine analogues. Bioorganic and Medicinal Chemistry, 2012, 20, 7040-7050.	1.4	24
82	Inhibition of monoamine oxidase by selected C6-substituted chromone derivatives. European Journal of Medicinal Chemistry, 2012, 49, 343-353.	2.6	48
83	Monoamine oxidase inhibition by C4-substituted phthalonitriles. Bioorganic Chemistry, 2012, 40, 114-124.	2.0	18
84	Azure B, a metabolite of methylene blue, is a high-potency, reversible inhibitor of monoamine oxidase. Toxicology and Applied Pharmacology, 2012, 258, 403-409.	1.3	99
85	Monoamine oxidase inhibition by selected anilide derivatives. European Journal of Medicinal Chemistry, 2011, 46, 5162-5174.	2.6	31
86	Thio- and aminocaffeine analogues as inhibitors of human monoamine oxidase. Bioorganic and Medicinal Chemistry, 2011, 19, 7507-7518.	1.4	29
87	Inhibition of monoamine oxidase by selected C5- and C6-substituted isatin analogues. Bioorganic and Medicinal Chemistry, 2011, 19, 261-274.	1.4	71
88	Inhibition of monoamine oxidase by C5-substituted phthalimide analogues. Bioorganic and Medicinal Chemistry, 2011, 19, 4829-4840.	1.4	37
89	8-Aryl- and alkyloxycaffeine analogues as inhibitors of monoamine oxidase. European Journal of Medicinal Chemistry, 2011, 46, 3474-3485.	2.6	28
90	Inhibition of monoamine oxidase by indole and benzofuran derivatives. European Journal of Medicinal Chemistry, 2010, 45, 4458-4466.	2.6	59

#	Article	IF	CITATIONS
91	Role of monoamine oxidase, nitric oxide synthase and regional brain monoamines in the antidepressant-like effects of methylene blue and selected structural analogues. Biochemical Pharmacology, 2010, 80, 1580-1591.	2.0	61
92	Inhibition of monoamine oxidase by 8-benzyloxycaffeine analogues. Bioorganic and Medicinal Chemistry, 2010, 18, 1018-1028.	1.4	81
93	Interactions of 1-methyl-3-phenylpyrrolidine and 3-methyl-1-phenyl-3-azabicyclo[3.1.0]hexane with monoamine oxidase B. Bioorganic and Medicinal Chemistry, 2010, 18, 4111-4118.	1.4	5
94	Dual-Target–Directed Drugs that Block Monoamine Oxidase B and Adenosine A Receptors for Parkinson's Disease. Neurotherapeutics, 2009, 6, 141-151.	2.1	74
95	Inhibition of monoamine oxidase B by N-methyl-2-phenylmaleimides. Bioorganic and Medicinal Chemistry, 2009, 17, 3104-3110.	1.4	18
96	Synthesis and in vitro evaluation of pteridine analogues as monoamine oxidase B and nitric oxide synthase inhibitors. Bioorganic and Medicinal Chemistry, 2009, 17, 7523-7530.	1.4	18
97	Inhibition of monoamine oxidase by (E)-styrylisatin analogues. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 2509-2513.	1.0	40
98	Structure–activity relationships in the inhibition of monoamine oxidase B by 1-methyl-3-phenylpyrroles. Bioorganic and Medicinal Chemistry, 2008, 16, 2463-2472.	1.4	26
99	Dual inhibition of monoamine oxidase B and antagonism of the adenosine A2A receptor by (E,E)-8-(4-phenylbutadien-1-yl)caffeine analogues. Bioorganic and Medicinal Chemistry, 2008, 16, 8676-8684.	1.4	64
100	Deuterium isotope effects for the oxidation of 1-methyl-3-phenyl-3-pyrrolinyl analogues by monoamine oxidase B. Bioorganic and Medicinal Chemistry, 2008, 16, 8813-8817.	1.4	3
101	Neurotoxicity studies with the monoamine oxidase B substrate 1-methyl-3-phenyl-3-pyrroline. Life Sciences, 2007, 81, 458-467.	2.0	6
102	Inhibition of monoamine oxidase B by selected benzimidazole and caffeine analogues. Bioorganic and Medicinal Chemistry, 2007, 15, 3692-3702.	1.4	67
103	Inhibition of monoamine oxidase B by analogues of the adenosine A2A receptor antagonist (E)-8-(3-chlorostyryl)caffeine (CSC). Bioorganic and Medicinal Chemistry, 2006, 14, 3512-3521.	1.4	71
104	Rational Approaches Towards Reversible Inhibition of Type B Monoamine Oxidase. Design and Evaluation of a Novel 5H-Indeno[1,2-c]pyridazin-5-one Derivative ChemInform, 2003, 34, no.	0.1	0
105	Inhibition of monoamine oxidase B by selective adenosine A 2A receptor antagonists. Bioorganic and Medicinal Chemistry, 2003, 11, 1299-1310.	1.4	97
106	Rational approaches towards reversible inhibition of type B monoamine oxidase. Design and evaluation of a novel 5H-Indeno[1,2-c]pyridazin-5-one derivative. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 69-73.	1.0	17
107	Phase 2 Enzyme Induction by the Major Metabolite of Oltipraz. Chemical Research in Toxicology, 2003, 16, 1463-1469.	1.7	26
108	Neuroprotection by caffeine and more specific A _{2A} receptor antagonists in animal models of Parkinson's disease. Neurology, 2003, 61, S55-61.	1.5	116

#	Article	IF	CITATIONS
109	Monoamine oxidase B inhibition and neuroprotection. Neurology, 2003, 61, S62-8.	1.5	32
110	8-(3-Chlorostyryl)caffeine May Attenuate MPTP Neurotoxicity through Dual Actions of Monoamine Oxidase Inhibition and A2A Receptor Antagonism. Journal of Biological Chemistry, 2002, 277, 36040-36044.	1.6	103
111	Neuroprotection in the MPTP Parkinsonian C57BL/6 Mouse Model by a Compound Isolated from Tobacco. Chemical Research in Toxicology, 2001, 14, 523-527.	1.7	58
112	Neuroprotection by Caffeine and A _{2A} Adenosine Receptor Inactivation in a Model of Parkinson's Disease. Journal of Neuroscience, 2001, 21, RC143-RC143.	1.7	465
113	Metabolic defects caused by 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyrtoine (MPTP) and by HPTP (the) Tj ETQq1 1	0.784314	rgBT /Overlo