
Tatsuya Nagata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5800445/publications.pdf Version: 2024-02-01

ΤΑΤΩΙΙΧΑ ΝΑCATA

#	Article	lF	CITATIONS
1	A simple method for cloning the complete begomovirus genome using the bacteriophage φ29 DNA polymerase. Journal of Virological Methods, 2004, 116, 209-211.	1.0	321
2	World Management of Geminiviruses. Annual Review of Phytopathology, 2018, 56, 637-677.	3.5	247
3	A review of geminivirus diseases in vegetables and other crops in Brazil: current status and approaches for management. Horticultura Brasileira, 2016, 34, 8-18.	0.1	148
4	Tissue tropism related to vector competence of Frankliniella occidentalis for tomato spotted wilt tospovirus Journal of General Virology, 1999, 80, 507-515.	1.3	100
5	A Study of Weeds as Potential Inoculum Sources for a Tomato-Infecting Begomovirus in Central Brazil. Phytopathology, 2013, 103, 436-444.	1.1	94
6	Diversity and prevalence of Brazilian bipartite begomovirus species associated to tomatoes. Virus Genes, 2008, 36, 251-258.	0.7	88
7	Factors determining vector competence and specificity for transmission of Tomato spotted wilt virus. Journal of General Virology, 2002, 83, 663-671.	1.3	81
8	The importance of primary inoculum and area-wide disease management to crop health and food security, 2016, 8, 221-238.	2.4	68
9	Further characterization of tomato-infecting begomoviruses in Brazil. Archives of Virology, 2012, 157, 747-752.	0.9	58
10	Impeded Thrips Transmission of Defective Tomato spotted wilt virus Isolates. Phytopathology, 2000, 90, 454-459.	1.1	55
11	Characterization of Bean Necrotic Mosaic Virus: A Member of a Novel Evolutionary Lineage within the Genus Tospovirus. PLoS ONE, 2012, 7, e38634.	1.1	48
12	Development of a locus-specific, co-dominant SCAR marker for assisted-selection of the Sw-5 (Tospovirus resistance) gene cluster in a wide range of tomato accessions. Molecular Breeding, 2010, 25, 133-142.	1.0	45
13	Sustained <scp>NIK</scp> â€mediated antiviral signalling confers broadâ€spectrum tolerance to begomoviruses in cultivated plants. Plant Biotechnology Journal, 2015, 13, 1300-1311.	4.1	43
14	Molecular and Biological Characterization of Tomato chlorotic mottle virus Suggests that Recombination Underlies the Evolution and Diversity of Brazilian Tomato Begomoviruses. Phytopathology, 2007, 97, 702-711.	1.1	41
15	Insecticidal activity of two proteases against Spodoptera frugiperda larvae infected with recombinant baculoviruses. Virology Journal, 2010, 7, 143.	1.4	40
16	Reaction of tomato hybrids carrying the Ty-1 locus to Brazilian bipartite Begomovirus species. Horticultura Brasileira, 2007, 25, 20-23.	0.1	39
17	Pepper yellow mosaic virus, a new potyvirus in sweetpepper, Capsicum annuum. Archives of Virology, 2002, 147, 849-855.	0.9	38
18	Genetic diversity and recombination analysis of sweepoviruses from Brazil. Virology Journal, 2012, 9, 241.	1.4	38

#	Article	IF	CITATIONS
19	Trichoderma harzianum expressed sequence tags for identification of genes with putative roles in mycoparasitism against Fusarium solani. Biological Control, 2012, 61, 134-140.	1.4	38
20	Construction of an infectious clone of a plant RNA virus in a binary vector using one-step Gibson Assembly. Journal of Virological Methods, 2015, 222, 11-15.	1.0	37
21	Characterization of tomato leaf curl purple vein virus, a new monopartite New World begomovirus infecting tomato in Northeast Brazil. Archives of Virology, 2018, 163, 737-743.	0.9	37
22	A novel melon flexivirus transmitted by whitefly. Archives of Virology, 2005, 150, 379-387.	0.9	35
23	The recombinant isolate of cucurbit aphidâ€borne yellows virus from Brazil is a polerovirus transmitted by whiteflies. Plant Pathology, 2020, 69, 1042-1050.	1.2	34
24	One-step cloning approach for construction of agroinfectious begomovirus clones. Journal of Virological Methods, 2008, 147, 351-354.	1.0	31
25	Effects of Temperature and Host on the Generation of Tomato Spotted Wilt Virus Defective Interfering RNAs. Phytopathology, 1997, 87, 1168-1173.	1.1	29
26	Natural infection of Nicandra physaloides by Tomato severe rugose virus in Brazil. Journal of General Plant Pathology, 2009, 75, 440-443.	0.6	29
27	First Report of Natural Occurrence of Zucchini Lethal Chlorosis Tospovirus on Cucumber and Chrysanthemum Stem Necrosis Tospovirus on Tomato in Brazil. Plant Disease, 1998, 82, 1403-1403.	0.7	29
28	Search in Solanum (section Lycopersicon) germplasm for sources of broad-spectrum resistance to four Tospovirus species. Euphytica, 2011, 180, 307-319.	0.6	28
29	Characterization of tomato yellow vein streak virus, a begomovirus from Brazil. Virus Genes, 2010, 40, 140-147.	0.7	27
30	The N protein of Tomato spotted wilt virus (TSWV) is associated with the induction of programmed cell death (PCD) in Capsicum chinense plants, a hypersensitive host to TSWV infection. Virus Research, 2008, 137, 245-252.	1.1	26
31	Discovery and molecular characterization of a novel enamovirus, Grapevine enamovirus-1. Virus Genes, 2017, 53, 667-671.	0.7	26
32	siRNA biogenesis and advances in topically applied dsRNA for controlling virus infections in tomato plants. Scientific Reports, 2020, 10, 22277.	1.6	26
33	First Report of Tomato severe rugose virus in Chili Pepper in Brazil. Plant Disease, 2006, 90, 114-114.	0.7	26
34	A novel monopartite begomovirus infecting sweet potato in Brazil. Archives of Virology, 2011, 156, 1291-1294.	0.9	24
35	First Report of <i>Tomato yellow leaf curl virus</i> in Tomato in Costa Rica. Plant Disease, 2014, 98, 699-699.	0.7	24
36	Occurrence and molecular characterization of Tomato common mosaic virus (ToCmMV) in tomato fields in EspÃrito Santo state, Brazil. Tropical Plant Pathology, 2016, 41, 62-66.	0.8	24

#	Article	IF	CITATIONS
37	Detection of three Allexivirus species infecting garlic in Brazil. Pesquisa Agropecuaria Brasileira, 2004, 39, 735-740.	0.9	23
38	Molecular and biological characterization of a new Brazilian begomovirus, euphorbia yellow mosaic virus (EuYMV), infecting Euphorbia heterophylla plants. Archives of Virology, 2011, 156, 2063-2069.	0.9	23
39	Dengue virus tetra-epitope peptide expressed in lettuce chloroplasts for potential use in dengue diagnosis. Applied Microbiology and Biotechnology, 2013, 97, 5721-5729.	1.7	23
40	Temporal and spatial progress of the diseases caused by the crinivirus tomato chlorosis virus and the begomovirus tomato severe rugose virus in tomatoes in Brazil. Plant Pathology, 2019, 68, 72-84.	1.2	23
41	Characterization and Experimental Host Range of a Brazilian Tomato Isolate of Tomato severe rugose virus. Journal of Phytopathology, 2011, 159, 644-646.	0.5	22
42	Multiplication of tomato spotted wilt virus in primary cell cultures derived from two thrips species. Virus Research, 1997, 49, 59-66.	1.1	21
43	Host range and whitefly transmission efficiency of Tomato severe rugose virus and Tomato golden vein virus in tomato plants. Tropical Plant Pathology, 2015, 40, 405-409.	0.8	18
44	Efeito da infecção precoce por Begomovirus com genoma bipartido em caracterÃsticas de frutos de tomate industrial. Horticultura Brasileira, 2005, 23, 815-818.	0.1	17
45	An RNA-dependent RNA polymerase gene of a distinct Brazilian tospovirus. Virus Genes, 2011, 43, 385-389.	0.7	17
46	Complete genome sequence of pepper yellow mosaic virus, a potyvirus, occurring in Brazil. Archives of Virology, 2012, 157, 1397-1401.	0.9	17
47	Surto epidemiológico do vÃŧus do mosaico amarelo do pimentão em tomateiro na região serrana do EspÃŧito Santo. Tropical Plant Pathology, 2004, 29, 325-327.	0.3	17
48	Molecular Characterization of Tomato Spotted Wilt Virus Defective Interfering RNAs and Detection of Truncated L Proteins. Virology, 1998, 248, 342-356.	1.1	16
49	Cucurbit aphid-borne yellows virus from melon plants in Brazil is an interspecific recombinant. Archives of Virology, 2019, 164, 249-254.	0.9	16
50	Detection of SARS-CoV-2 virus via dynamic light scattering using antibody-gold nanoparticle bioconjugates against viral spike protein. Talanta, 2022, 243, 123355.	2.9	16
51	Analysis of the nucleotide sequence of the coat protein and 3'-untranslated region of two Brazilian Potato virus Y isolates. Tropical Plant Pathology, 2001, 26, 45-52.	0.3	15
52	Comparative analysis of American Dengue virus type 1 full-genome sequences. Virus Genes, 2010, 40, 60-66.	0.7	15
53	High incidence of Tomato chlorosis virus alone and in mixed infection with begomoviruses in two tomato fields in the Federal District and GoiĀjs state, Brazil. Tropical Plant Pathology, 2014, 39, 449-452.	0.8	15
54	Isolation of a novel carlavirus from melon in Brazil. Plant Pathology, 2003, 52, 797-797.	1.2	14

#	Article	IF	CITATIONS
55	Genome analysis of a severe and a mild isolate of Papaya ringspot virus-type W found in Brazil. Virus Genes, 2007, 35, 119-127.	0.7	14
56	Complete genome sequence of Brugmansia suaveolens mottle virus, a potyvirus from an ornamental shrub. Archives of Virology, 2010, 155, 1729-1732.	0.9	14
57	First Report of <i>Tomato severe rugose virus</i> , a Tomato-Infecting Begomovirus, in Soybean Plants in Brazil. Plant Disease, 2017, 101, 1959-1959.	0.7	14
58	Temporal and spatial dynamics of begomovirus disease in tomatoes in central Brazil. Plant Pathology, 2017, 66, 529-538.	1.2	14
59	Complete genome sequence of a putative new secovirus infecting yam (Dioscorea) plants. Archives of Virology, 2017, 162, 317-319.	0.9	14
60	Sequence Analysis of the Glycoproteins of Tomato Chlorotic Spot Virus and Groundnut Ringspot virus and Comparison with other Tospoviruses. Virus Genes, 2004, 29, 321-328.	0.7	13
61	Molecular characterization reveals Brazilian Tomato chlorosis virus to be closely related to a Greek isolate. Tropical Plant Pathology, 2013, 38, 332-336.	0.8	13
62	Survey of begomoviruses and the crinivirus, tomato chlorosis virus, in solanaceous in Southeast/Midwest of Brazil. Tropical Plant Pathology, 2019, 44, 468-472.	0.8	13
63	First Report of Common Beans as a Non-Symptomatic Host of <i>Tomato severe rugose virus</i> in Brazil. Plant Disease, 2017, 101, 261.	0.7	13
64	Bidens Mosaic Virus is a Member of the Potato Virus Y Species. Virus Genes, 2006, 33, 45-49.	0.7	12
65	Complete genome sequence of arracacha mottle virus. Archives of Virology, 2013, 158, 291-295.	0.9	12
66	Characterization of a novel tymovirus on tomato plants in Brazil. Virus Genes, 2013, 46, 190-194.	0.7	12
67	A simplified approach to construct infectious cDNA clones of a tobamovirus in a binary vector. Journal of Virological Methods, 2014, 198, 32-36.	1.0	12
68	The possible molecular evolution of sapoviruses by inter- and intra-genogroup recombination. Archives of Virology, 2011, 156, 1953-1959.	0.9	11
69	A distinct tymovirus infecting Cassia hoffmannseggii in Brazil. Virus Genes, 2012, 45, 190-194.	0.7	11
70	Possible Host Adaptation as an Evolution Factor of <i>Cowpea aphidâ€borne mosaic virus</i> Deduced by Coat Protein Gene Analysis. Journal of Phytopathology, 2012, 160, 82-87.	0.5	11
71	Expression and assembly of Norwalk virus-like particles in plants using a viral RNA silencing suppressor gene. Applied Microbiology and Biotechnology, 2013, 97, 9021-9027.	1.7	11
72	A Temporal Diversity Analysis of Brazilian Begomoviruses in Tomato Reveals a Decrease in Species Richness between 2003 and 2016. Frontiers in Plant Science, 2020, 11, 1201.	1.7	11

#	Article	IF	CITATIONS
73	Ocorrência de viroses em tomate e pimentão na região serrana do estado do EspÃrito Santo. Horticultura Brasileira, 2004, 22, 655-658.	0.1	10
74	Potato deforming mosaic disease is caused by an isolate of Tomato yellow vein streak virus. Plant Pathology, 2006, 55, 569-569.	1.2	10
75	Brugmansia suaveolens mottle virus, a novel potyvirus causing leaf mottling of Brugmansia suaveolens in Brazil. Archives of Virology, 2008, 153, 1971-1976.	0.9	10
76	Characterization of a member of a new Potyvirus species infecting arracacha in Brazil. Archives of Virology, 2009, 154, 181-185.	0.9	10
77	Soybean chlorotic spot virus, a novel begomovirus infecting soybean in Brazil. Archives of Virology, 2013, 158, 457-462.	0.9	10
78	Complete Genome Sequence of a Novel Bastrovirus Isolated from Raw Sewage. Genome Announcements, 2017, 5, .	0.8	10
79	Genetic diversity and geographic distribution of <scp><i>Bemisia tabaci</i></scp> and <scp><i>Trialeurodes vaporariorum</i></scp> in Costa Rica. Annals of Applied Biology, 2019, 174, 248-261.	1.3	10
80	Ocorrência de vÃrus em batata em sete estados do Brasil. Horticultura Brasileira, 2009, 27, 490-497.	0.1	10
81	Desempenho de hÃbridos de tomate para processamento industrial em pressão de begomovirose e de mancha-bacteriana. Horticultura Brasileira, 2014, 32, 446-452.	0.1	10
82	The complete genome sequence of a Brazilian isolate of yam mild mosaic virus. Archives of Virology, 2013, 158, 515-518.	0.9	9
83	Complete genome sequence of a proposed new tymovirus, tomato blistering mosaic virus. Archives of Virology, 2015, 160, 609-612.	0.9	9
84	Chloroplast Proteome of Nicotiana benthamiana Infected by Tomato Blistering Mosaic Virus. Protein Journal, 2018, 37, 290-299.	0.7	9
85	Genetic variation and recombination of RdRp and HSP 70h genes of Citrus tristeza virus isolates from orange trees showing symptoms of citrus sudden death disease. Virology Journal, 2008, 5, 9.	1.4	8
86	Citrus Sudden Death Is Transmitted by Graft-Inoculation and Natural Transmission Is Prevented by Individual Insect-Proof Cages. Plant Disease, 2011, 95, 104-112.	0.7	8
87	Yellow fever virus envelope protein expressed in insect cells is capable of syncytium formation in lepidopteran cells and could be used for immunodetection of YFV in human sera. Virology Journal, 2011, 8, 261.	1.4	8
88	A novel vitivirus-like sequence found in Arracacia xanthorrhiza plants by high throughput sequencing. Archives of Virology, 2017, 162, 2141-2144.	0.9	8
89	Construction of a full-length infectious cDNA clone of Cowpea mild mottle virus. Virus Genes, 2017, 53, 137-140.	0.7	8
90	Tomato Chlorotic Spot Virus (TCSV) Putatively Incorporated a Genomic Segment of Groundnut Ringspot Virus (GRSV) Upon a Reassortment Event. Viruses, 2019, 11, 187.	1.5	8

#	Article	IF	CITATIONS
91	First Report of Watermelon Crinkle Leaf-Associated Virus 1 and 2 Infecting Watermelon (<i>Citrullus) Tj ETQq1 1</i>	0,784314	rgBT /Over
92	Simplified Methods for the Construction of RNA and DNA Virus Infectious Clones. Methods in Molecular Biology, 2015, 1236, 241-254.	0.4	8
93	Characterization of yam mosaic viruses from Brazil reveals a new phylogenetic group and possible incursion from the African continent. Virus Genes, 2022, 58, 294-307.	0.7	8
94	The glycoprotein gene of Chrysanthemum stem necrosis virus and Zucchini lethal chlorosis virus and molecular relationship with other tospoviruses. Virus Genes, 2007, 35, 785-793.	0.7	7
95	Development of a new tobamovirus-based viral vector for protein expression in plants. Molecular Biology Reports, 2019, 46, 97-103.	1.0	7
96	Characterization of an infectious clone of pepper ringspot virus and its use as a viral vector. Archives of Virology, 2020, 165, 367-375.	0.9	7
97	Tobamoviruses of two new species trigger resistance in pepper plants harbouring functional L alleles. Journal of General Virology, 2021, 102, .	1.3	7
98	Complete genome sequences of three newly discovered cacao mild mosaic virus isolates from Theobroma cacao L. in Brazil and Puerto Rico and evidence for recombination. Archives of Virology, 2021, 166, 2027-2031.	0.9	7
99	Espécies vegetais hospedeiras de begomovÃrus isolados de tomateiro em Goiás e no Distrito Federal. Tropical Plant Pathology, 2004, 29, 450-455.	0.3	6
100	Discovery of two small circular ssDNA viruses associated with the whitefly Bemisia tabaci. Archives of Virology, 2017, 162, 2835-2838.	0.9	6
101	Complete genome sequence of a new bipartite begomovirus infecting tomato in Brazil. Archives of Virology, 2019, 164, 2873-2875.	0.9	6
102	Human virome in nasopharynx and tracheal secretion samples. Memorias Do Instituto Oswaldo Cruz, 2019, 114, e190198.	0.8	6
103	Complete genome sequence and phylogenetic analysis of a novel dicistrovirus associated with the whitefly Bemisia tabaci. Virus Research, 2019, 260, 49-52.	1.1	6
104	Dengue and Zika virus multi-epitope antigen expression in insect cells. Molecular Biology Reports, 2020, 47, 7333-7340.	1.0	6
105	Molecular and clinical characteristics related to rhinovirus infection in BrasÃlia, Brazil. Brazilian Journal of Microbiology, 2021, 52, 289-298.	0.8	6
106	Busca por Tomato yellow leaf curl virus e Tomato yellow leaf curl Sardinia virus em tomateiros. Horticultura Brasileira, 2004, 22, 799-800.	0.1	5
107	Analysis of the triple gene block sequence in an important melon pathogen, Melon yellowing-associated virus. Journal of General Plant Pathology, 2010, 76, 268-272.	0.6	5
108	Further evidence reveals that okra mottle virus arose from a double recombination event. Archives of Virology, 2013, 158, 181-186.	0.9	5

#	Article	IF	CITATIONS
109	A highly divergent isolate of tomato blistering mosaic virus from Solanum violaefolium. Virus Genes, 2016, 52, 294-298.	0.7	5
110	Construction of an agroinfectious clone of bean rugose mosaic virus using Gibson Assembly. Virus Genes, 2017, 53, 495-499.	0.7	5
111	Natural Infection of Apple-of-Peru (<i>Nicandra physaloides</i>) with Tomato Chlorosis Virus in Brazil. Plant Disease, 2019, 103, 593-593.	0.7	5
112	First Report of Grapevine Associated Jivivirus 1 Infecting Grapevines in Brazil. Plant Disease, 2021, 105, 514-514.	0.7	5
113	Detecção por sorologia do Melon yellowing associated virus (MYaV) em áreas produtoras de melão no Nordeste brasileiro. Horticultura Brasileira, 2009, 27, 478-483.	0.1	4
114	Subcellular localization of p29, a putative movement protein of pepper ringspot virus. Archives of Virology, 2015, 160, 359-364.	0.9	4
115	Suscetibilidade de adultos de Bemisia tabaci biótipo B a inseticidas. Horticultura Brasileira, 2016, 34, 189-195.	0.1	4
116	Complete genome sequence of melon yellowing-associated virus from melon plants with the severe yellowing disease in Brazil. Archives of Virology, 2017, 162, 3899-3901.	0.9	4
117	Sources of resistance to Potato virus Y and Pepper yellow mosaic virus in Solanum (section) Tj ETQq1 1 0.78431	4 rgBT /O	overlock 10 Tf
118	Complete sequence of a new bipartite begomovirus infecting Sida sp. in Northeastern Brazil. Archives of Virology, 2020, 165, 253-256.	0.9	4
119	Evidence of Spread of Bemisia tabaci (Hemiptera: Aleyrodidae) Mediated by Internal Transportation of Ornamental Plants in Brazil. Neotropical Entomology, 2021, 50, 850-857.	0.5	4
120	Nanopore sequencing of tomato mottle leaf distortion virus, a new bipartite begomovirus infecting tomato in Brazil. Archives of Virology, 2021, 166, 3217-3220.	0.9	4
121	First Report of <i>Bidens mosaic virus</i> in Arracacha (<i>Arracacia xanthorriza</i>) From Brazil. Plant Disease, 2017, 101, 262-262.	0.7	4
122	Serological Identification of Virus in Watermelon Production Fields in the Tocantins State. Brazilian Archives of Biology and Technology, 2015, 58, 192-197.	0.5	4
123	Development of a heterologous gene expression vector in plants based on an infectious clone of a tobravirus, pepper ringspot virus. Annals of Applied Biology, 2022, 181, 107-116.	1.3	4
124	Natural infection of Alternanthera tenella (Amaranthaceae) by a new potyvirus. Archives of Virology, 2007, 152, 2095-2099.	0.9	3
125	Alta incidência de Pepper yellow mosaic virus em tomateiro em região produtora no Distrito Federal. Tropical Plant Pathology, 2008, 33, 67-68.	0.8	3
126	Unique RNA 2 sequences of two Brazilian isolates of Pepper ringspot virus, a tobravirus. Virus Genes, 2014, 49, 169-173.	0.7	3

#	Article	IF	CITATIONS
127	Complete genome sequence of tobacco mosqueado virus. Archives of Virology, 2016, 161, 2619-2622.	0.9	3
128	Biological and molecular characterization of a highly divergent johnsongrass mosaic virus isolate from Pennisetum purpureum. Archives of Virology, 2016, 161, 1981-1986.	0.9	3
129	Assembly of tomato blistering mosaic virus-like particles using a baculovirus expression vector system. Archives of Virology, 2019, 164, 1753-1760.	0.9	3
130	Biological and molecular characterization of isolates of catharanthus mosaic virus infecting Mandevilla sp Tropical Plant Pathology, 2020, 45, 461-465.	0.8	3
131	Host range and natural infection of tomato chlorosis virus in weeds collected in Central Brazil. Tropical Plant Pathology, 2020, 45, 84-90.	0.8	3
132	Produção do anti-soro e detecção por DAS-Elisa do Melon yellowing-associated virus em meloeiro. Tropical Plant Pathology, 2008, 33, 245-247.	0.8	3
133	First Report of Tomato Fruit Blotch Virus Infecting Tomatoes in Brazil. Plant Disease, 2022, 106, 2271.	0.7	3
134	A reliable begomovirus inoculation method for screening Lycopersicon esculentum lines. Horticultura Brasileira, 2007, 25, 447-450.	0.1	2
135	Sequence determination and analysis of the NSs genes of two tospoviruses. Archives of Virology, 2012, 157, 591-596.	0.9	2
136	High-throughput sequencing reveals a novel closterovirus in arracacha (Arracacia xanthorrhiza). Archives of Virology, 2018, 163, 2547-2550.	0.9	2
137	First Report of Lettuce Chlorosis Virus Infecting Periwinkle in Brazil. Plant Disease, 2020, 104, 1263-1263.	0.7	2
138	New features on the genomic organization of a novel dicistrovirus identified from the sweet potato whitefly Bemisia tabaci. Virus Research, 2020, 288, 198112.	1.1	1
139	Two viruses from Stylosanthes guianensis may represent a new genus within Potyviridae. Virus Research, 2021, 293, 198257.	1.1	1
140	Detecção de um begomovÃŧus em amostras foliares de tomateiro com sondas não-radioativas. Ciencia Rural, 2007, 37, 269-272.	0.3	1
141	Viroid sequences in plant and animal genomic DNAs Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 1989, 65, 160-164.	1.6	Ο
142	Malvaviscus yellow mosaic virus, a divergent begomovirus carrying a nanovirusâ€like nonanucleotide and a modified stemâ€loop structure. Annals of Applied Biology, 2021, 179, 96-107.	1.3	0
143	Identification of sida micrantha mosaic virus as the causal agent of common mosaic in cotton in Goiás. Summa Phytopathologica, 2021, 47, 222-224.	0.3	0