## Wenzheng Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/580016/publications.pdf Version: 2024-02-01



WENZHENC WU

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Influence of Layer Thickness and Raster Angle on the Mechanical Properties of 3D-Printed PEEK and a<br>Comparative Mechanical Study between PEEK and ABS. Materials, 2015, 8, 5834-5846.                         | 1.3 | 610       |
| 2  | Influence of Layer Thickness, Raster Angle, Deformation Temperature and Recovery Temperature on the Shape-Memory Effect of 3D-Printed Polylactic Acid Samples. Materials, 2017, 10, 970.                         | 1.3 | 94        |
| 3  | Effect of Thermal Processing and Heat Treatment Condition on 3D Printing PPS Properties. Polymers, 2018, 10, 875.                                                                                                | 2.0 | 63        |
| 4  | Separated 3D printing of continuous carbon fiber reinforced thermoplastic polyimide. Composites<br>Part A: Applied Science and Manufacturing, 2019, 121, 457-464.                                                | 3.8 | 55        |
| 5  | 3D printing of carbon nanotubes reinforced thermoplastic polyimide composites with controllable mechanical and electrical performance. Composites Science and Technology, 2019, 182, 107671.                     | 3.8 | 47        |
| 6  | Radial Compressive Property and the Proof-of-Concept Study for Realizing Self-expansion of 3D<br>Printing Polylactic Acid Vascular Stents with Negative Poisson's Ratio Structure. Materials, 2018, 11,<br>1357. | 1.3 | 43        |
| 7  | Effect of Ultrasonic Vibration on Mechanical Properties of 3D Printing Non-Crystalline and Semi-Crystalline Polymers. Materials, 2018, 11, 826.                                                                  | 1.3 | 38        |
| 8  | 3D printing of thermoplastic PI and interlayer bonding evaluation. Materials Letters, 2018, 229, 206-209.                                                                                                        | 1.3 | 33        |
| 9  | Improving bending and dynamic mechanics performance of 3D printing through ultrasonic strengthening. Materials Letters, 2018, 220, 317-320.                                                                      | 1.3 | 31        |
| 10 | Additive manufacturing landscape and materials perspective in 4D printing. International Journal of<br>Advanced Manufacturing Technology, 2021, 115, 2973-2988.                                                  | 1.5 | 30        |
| 11 | Ultrasonic strengthening improves tensile mechanical performance of fused deposition modeling 3D printing. International Journal of Advanced Manufacturing Technology, 2018, 96, 2747-2755.                      | 1.5 | 29        |
| 12 | 3D Printing of Graphite Electrode for Lithiumâ€lon Battery with High Areal Capacity. Energy Technology,<br>2021, 9, 2100628.                                                                                     | 1.8 | 19        |
| 13 | Fabrication and <i>In Vitro</i> Evaluation of 3D Printed Porous Polyetherimide Scaffolds for Bone<br>Tissue Engineering. BioMed Research International, 2019, 2019, 1-8.                                         | 0.9 | 16        |
| 14 | Effects of Printing Parameters on the Mechanical Properties of High-Performance Polyphenylene<br>Sulfide Three-Dimensional Printing. 3D Printing and Additive Manufacturing, 2021, 8, 33-41.                     | 1.4 | 15        |
| 15 | One-Pot Three-Dimensional Printing Robust Self-Supporting MnO <sub>x</sub> /Cu-SSZ-13 Zeolite<br>Monolithic Catalysts for NH <sub>3</sub> -SCR. CCS Chemistry, 2022, 4, 1708-1719.                               | 4.6 | 14        |
| 16 | TiO <sub>2</sub> hollow spheres on reduced graphene oxide with high rate performance as anodes for lithium-ion batteries. RSC Advances, 2017, 7, 53097-53103.                                                    | 1.7 | 13        |
| 17 | Study of printing parameters of pneumatic-injection 3D printing of Fe-based metallic glass. Journal of Non-Crystalline Solids, 2018, 489, 50-56.                                                                 | 1.5 | 9         |
| 18 | Experiments on the Ultrasonic Bonding Additive Manufacturing of Metallic Glass and Crystalline Metal Composite. Materials, 2019, 12, 2975.                                                                       | 1.3 | 9         |

Wenzheng Wu

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Application and Prospects of Hydrogel Additive Manufacturing. Gels, 2022, 8, 297.                                                                                                                                              | 2.1 | 9         |
| 20 | Influence of Thermal Processing Conditions on Mechanical and Material Properties of 3D Printed<br>Thin-Structures Using PEEK Material. International Journal of Precision Engineering and<br>Manufacturing, 2022, 23, 689-699. | 1.1 | 9         |
| 21 | Printing parameters and strengthening mechanism of pneumatic injection additive manufacturing<br>with iron powder slurry. International Journal of Advanced Manufacturing Technology, 2018, 94,<br>3809-3817.                  | 1.5 | 8         |
| 22 | Preparation and performance evaluation of silica gel/tricalcium silicate composite slurry for 3D printing. Journal of Non-Crystalline Solids, 2019, 503-504, 334-339.                                                          | 1.5 | 8         |
| 23 | Influence Mechanism of Ultrasonic Vibration Substrate on Strengthening the Mechanical Properties of Fused Deposition Modeling. Polymers, 2022, 14, 904.                                                                        | 2.0 | 8         |
| 24 | Additive manufacturing of continuous BF-reinforced PES composite material and mechanical and wear properties evaluation. Journal of Materials Science, 2022, 57, 12903-12915.                                                  | 1.7 | 5         |
| 25 | Optimization of Sintering Time and Holding Time for 3D Printing of Fe-Based Metallic Glasses. Metals, 2018, 8, 429.                                                                                                            | 1.0 | 4         |
| 26 | Bio-Inspired 4D Printing of Dynamic Spider Silks. Polymers, 2022, 14, 2069.                                                                                                                                                    | 2.0 | 4         |
| 27 | Hybrid Additive Manufacturing of Fused Filament Fabrication and Ultrasonic Consolidation. Polymers, 2022, 14, 2385.                                                                                                            | 2.0 | 4         |
| 28 | The study on electric field distribution and droplet trajectory during electrohydrodynamic jet printing. Microsystem Technologies, 2021, 27, 2745-2750.                                                                        | 1.2 | 3         |
| 29 | Performance modulation and 3D printing parameters optimization of implantable medical tricalcium-silicate/polyetherimide composite. Ceramics International, 2021, 47, 10679-10687.                                             | 2.3 | 3         |
| 30 | The fabrication of integrated and three-layer SU-8 nozzles for electrohydrodynamic printing.<br>Microfluidics and Nanofluidics, 2020, 24, 1.                                                                                   | 1.0 | 2         |
| 31 | Behavioural Design Approach for Solving Mechanical Product Design Problem. , 2014, , .                                                                                                                                         |     | 0         |
| 32 | A Novel Room-Temperature Bonding Method Based on Electrohydrodynamic Printing. Journal of Nanoscience and Nanotechnology, 2021, 21, 1672-1677.                                                                                 | 0.9 | 0         |