
Jafar Zanganeh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5799579/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The composition, recycling and utilisation of Bayer red mud. Resources, Conservation and Recycling, 2019, 141, 483-498.	10.8	353
2	A review on understanding explosions from methane–air mixture. Journal of Loss Prevention in the Process Industries, 2016, 40, 507-523.	3.3	152
3	Integration options for novel chemical looping air separation (ICLAS) process for oxygen production in oxy-fuel coal fired power plants. Fuel, 2013, 107, 356-370.	6.4	75
4	Methane-coal dust hybrid fuel explosion properties in a large scale cylindrical explosion chamber. Journal of Loss Prevention in the Process Industries, 2016, 40, 317-328.	3.3	72
5	Effects of ignition energy on fire and explosion characteristics of dilute hybrid fuel in ventilation air methane. Journal of Loss Prevention in the Process Industries, 2016, 40, 207-216.	3.3	69
6	Explosion severity of methane–coal dust hybrid mixtures in a ducted spherical vessel. Powder Technology, 2018, 323, 95-102.	4.2	69
7	Waste recycling by vermicomposting: Maturity and quality assessment via dehydrogenase enzyme activity, lignin, water soluble carbon, nitrogen, phosphorous and other indicators. Journal of Environmental Management, 2016, 182, 134-140.	7.8	62
8	The flame deflagration of hybrid methane coal dusts in a large-scale detonation tube (LSDT). Fuel, 2017, 194, 491-502.	6.4	53
9	Deflagration of premixed methane–air in a large scale detonation tube. Chemical Engineering Research and Design, 2017, 109, 374-386.	5.6	51
10	Effect of magnetic nanoparticles and silver-loaded magnetic nanoparticles on advanced wastewater treatment and disinfection. Journal of Molecular Liquids, 2020, 303, 112640.	4.9	50
11	Explosion characteristics of methane–air mixtures in a spherical vessel connected with a duct. Chemical Engineering Research and Design, 2017, 111, 85-93.	5.6	45
12	Confined explosion of methane-air mixtures under turbulence. Fuel, 2018, 220, 471-480.	6.4	44
13	Flame deflagration in side-on vented detonation tubes: A large scale study. Journal of Hazardous Materials, 2018, 345, 38-47.	12.4	38
14	Integration Options and Economic Analysis of an Integrated Chemical Looping Air Separation Process for Oxy-fuel Combustion. Energy & Fuels, 2016, 30, 1741-1755.	5.1	37
15	Impact of suspended coal dusts on methane deflagration properties in a largeâ€scale straight duct. Journal of Hazardous Materials, 2017, 338, 334-342.	12.4	37
16	Application of Concrete and Demolition Waste as CO ₂ Sorbent in Chemical Looping Gasification of Biomass. Energy & Fuels, 2012, 26, 2046-2057.	5.1	31
17	Influences of the Initial Ignition Energy on Methane Explosion in a Flame Deflagration Tube. Energy & Fuels, 2017, 31, 6422-6434.	5.1	31
18	Experimental investigation of the minimum auto-ignition temperature (MAIT) of the coal dust layer in a hot and humid environment. Fire Safety Journal, 2016, 82, 12-22.	3.1	26

JAFAR ZANGANEH

#	Article	IF	CITATIONS
19	Combustion and flame spread on fuel-soaked porous solids. Progress in Energy and Combustion Science, 2013, 39, 320-339.	31.2	21
20	The effects of coal dust concentrations and particle sizes on the minimum autoâ€ignition temperature of a coal dust cloud. Fire and Materials, 2017, 41, 908-915.	2.0	14
21	Application of flame arrester in mitigation of explosion and flame deflagration of ventilation air methane. Fuel, 2019, 257, 115985.	6.4	14
22	Flame spread over porous sand beds wetted with propenol. Fire and Materials, 2011, 35, 61-70.	2.0	12
23	Effect of Tube Size on Flame and Pressure Wave Propagation in a Tube Closed at One End: A Numerical Study. Combustion Science and Technology, 2020, 192, 1731-1753.	2.3	12
24	Effect of fuel soaked time and fuel ratio on the flame spread rate over a porous bed wetted with liquid fuel. Fire Safety Journal, 2013, 59, 151-159.	3.1	11
25	Characterization of "Chailings†A Char Created from Coal Tailings. Energy & Fuels, 2014, 28, 7609-7615.	5.1	11
26	Investigation of flame propagation over an inclined fuel wetted porous bed. Fire Safety Journal, 2014, 67, 113-120.	3.1	10
27	Flame Propagation and Reflections of Pressure Waves through Fixed Beds of RTO Devices: A CFD Study. Industrial & Engineering Chemistry Research, 2019, 58, 23389-23404.	3.7	10
28	A 3D numerical study on the effects of obstacles on flame propagation in a cylindrical explosion vessel connected to a vented tube. Journal of Loss Prevention in the Process Industries, 2016, 44, 53-61.	3.3	9
29	Capture and Mitigation of Fugitive Methane: Examining the Characteristics of Methane Explosions in an Explosion Chamber Connected to a Venting Duct. Energy & (2020, 34, 645-654).	5.1	9
30	A 3D numerical study of detonation wave propagation in various angled bending tubes. Fire Safety Journal, 2016, 86, 53-64.	3.1	8
31	CFD Investigation of Flame and Pressure Wave Propagation through Variable Concentration Methane-Air Mixtures in a Tube Closed at One End. Combustion Science and Technology, 2021, 193, 1203-1230.	2.3	8
32	Experimental evaluation and analysis of methane fire and explosion mitigation using isolation valves integrated with a vent system. Journal of Hazardous Materials, 2017, 339, 301-309.	12.4	7
33	Hydrodynamics similarities in cold flow model of chemical looping combustors: An experimental study. Powder Technology, 2019, 343, 542-550.	4.2	7
34	Experimental Study of Temperature Distribution and Flame Spread Over an Inert Porous Bed Wetted with Liquid Fuel. International Journal of Emerging Multidisciplinary Fluid Sciences, 2010, 2, 1-14.	0.5	6
35	Theoretical study on thermochemical parameters and pKa values for fluorinated isomers of toluene. Computational and Theoretical Chemistry, 2013, 1011, 21-29.	2.5	6
36	Experimental and mathematical analysis of fuel penetration through unconsolidated porous media. Fire and Materials, 2013, 37, 160-170.	2.0	5

JAFAR ZANGANEH

#	Article	IF	CITATIONS
37	Thermodynamic Assessment of Heat Recovery from a Fluidized-Bed Ventilation Air Methane Abatement Unit. Energy & Fuels, 2018, 32, 4579-4585.	5.1	5
38	Simulation of power and cooling generation via heat recovery from a ventilation air methane abatement unit. Fuel, 2019, 249, 27-35.	6.4	2
39	CFD Modeling of Flame Jump across Air Gap between Evasé and Capture Duct for Ventilation Air Methane Abatement. Processes, 2021, 9, 2278.	2.8	2
40	Ventilation air methane: a simulation of an optimised process of abatement with power and cooling. Mining Technology: Transactions of the Institute of Mining and Metallurgy, 2020, 129, 9-21.	0.5	1
41	Comparative Study of Data Mining Techniques for Predicting Explosions in Coal Mines. , 2020, , .		1