Jeffrey L Franklin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5799195/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reassessment of Exosome Composition. Cell, 2019, 177, 428-445.e18.	13.5	1,786
2	The Pan-ErbB Negative Regulator Lrig1 Is an Intestinal Stem Cell Marker that Functions as a Tumor Suppressor. Cell, 2012, 149, 146-158.	13.5	580
3	Proteomic Analysis of Exosomes from Mutant KRAS Colon Cancer Cells Identifies Intercellular Transfer of Mutant KRAS. Molecular and Cellular Proteomics, 2013, 12, 343-355.	2.5	431
4	lncRNA MIR100HG-derived miR-100 and miR-125b mediate cetuximab resistance via Wnt/β-catenin signaling. Nature Medicine, 2017, 23, 1331-1341.	15.2	352
5	KRAS-MEK Signaling Controls Ago2 Sorting into Exosomes. Cell Reports, 2016, 15, 978-987.	2.9	328
6	Amphiregulin Exosomes Increase Cancer Cell Invasion. Current Biology, 2011, 21, 779-786.	1.8	309
7	KRAS-dependent sorting of miRNA to exosomes. ELife, 2015, 4, e07197.	2.8	296
8	Circular RNAs are down-regulated in KRAS mutant colon cancer cells and can be transferred to exosomes. Scientific Reports, 2016, 6, 37982.	1.6	268
9	Transfer of Functional Cargo in Exomeres. Cell Reports, 2019, 27, 940-954.e6.	2.9	255
10	Supermeres are functional extracellular nanoparticles replete with disease biomarkers and therapeutic targets. Nature Cell Biology, 2021, 23, 1240-1254.	4.6	171
11	Unsupervised Trajectory Analysis of Single-Cell RNA-Seq and Imaging Data Reveals Alternative Tuft Cell Origins in the Gut. Cell Systems, 2018, 6, 37-51.e9.	2.9	167
12	Differential pre-malignant programs and microenvironment chart distinct paths to malignancy in human colorectal polyps. Cell, 2021, 184, 6262-6280.e26.	13.5	125
13	Identification and characterization of EGF receptor in individual exosomes by fluorescenceâ€activated vesicle sorting. Journal of Extracellular Vesicles, 2016, 5, 29254.	5.5	107
14	Optimized multiplex immunofluorescence single-cell analysis reveals tuft cell heterogeneity. JCI Insight, 2017, 2, .	2.3	106
15	Diverse Long RNAs Are Differentially Sorted into Extracellular Vesicles Secreted by Colorectal Cancer Cells. Cell Reports, 2018, 25, 715-725.e4.	2.9	102
16	Quantitative Proteomic Analysis of Small and Large Extracellular Vesicles (EVs) Reveals Enrichment of Adhesion Proteins in Small EVs. Journal of Proteome Research, 2019, 18, 947-959.	1.8	71
17	Interaction of IncRNA MIR100HG with hnRNPA2B1 facilitates m6A-dependent stabilization of TCF7L2 mRNA and colorectal cancer progression. Molecular Cancer, 2022, 21, 74.	7.9	69
18	Myristoylated Naked2 escorts transforming growth factor to the basolateral plasma membrane of polarized epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5571-5576.	3.3	66

JEFFREY L FRANKLIN

#	Article	IF	CITATIONS
19	Clostridium difficile Toxins TcdA and TcdB Cause Colonic Tissue Damage by Distinct Mechanisms. Infection and Immunity, 2016, 84, 2871-2877.	1.0	52
20	Angiotensin-converting Enzyme 2–containing Small Extracellular Vesicles and Exomeres Bind the Severe Acute Respiratory Syndrome Coronavirus 2 Spike Protein. Gastroenterology, 2021, 160, 958-961.e3.	0.6	42
21	Cytometryâ€based singleâ€cell analysis of intact epithelial signaling reveals <scp>MAPK</scp> activation divergent from <scp>TNF</scp> â€i±â€induced apoptosis <i>inÂvivo</i> . Molecular Systems Biology, 2015, 11, 835.	3.2	41
22	KRAS Mutation-Responsive miR-139-5p inhibits Colorectal Cancer Progression and is repressed by Wnt Signaling. Theranostics, 2020, 10, 7335-7350.	4.6	40
23	Use of Fluorescence-activated Vesicle Sorting for Isolation of Naked2-associated, Basolaterally Targeted Exocytic Vesicles for Proteomics Analysis. Molecular and Cellular Proteomics, 2008, 7, 1651-1667.	2.5	36
24	A Chimeric Egfr Protein Reporter Mouse Reveals Egfr Localization and Trafficking InÂVivo. Cell Reports, 2017, 19, 1257-1267.	2.9	36
25	Identification of a Novel Mono‣eucine Basolateral Sorting Motif Within the Cytoplasmic Domain of Amphiregulin. Traffic, 2011, 12, 1793-1804.	1.3	34
26	Identification of MAGI-3 as a transforming growth factor-α tail binding protein. Experimental Cell Research, 2005, 303, 457-470.	1.2	32
27	Mutant KRAS Exosomes Alter the Metabolic StateÂofÂRecipient ColonicÂEpithelial Cells. Cellular and Molecular Gastroenterology and Hepatology, 2018, 5, 627-629.e6.	2.3	27
28	Rab13 regulates sEV secretion in mutant KRAS colorectal cancer cells. Scientific Reports, 2020, 10, 15804.	1.6	27
29	Malignant transformation of colonic epithelial cells by a colon-derived long noncoding RNA. Biochemical and Biophysical Research Communications, 2013, 440, 99-104.	1.0	25
30	LRIG1 Regulates Ontogeny of Smooth Muscleâ `Derived Subsets of Interstitial Cells of Cajal in Mice. Gastroenterology, 2015, 149, 407-419.e8.	0.6	25
31	Gene expression profile analysis of mouse colon embryonic development. Genesis, 2005, 41, 1-12.	0.8	20
32	Using a new Lrig1 reporter mouse to assess differences between two Lrig1 antibodies in the intestine. Stem Cell Research, 2014, 13, 422-430.	0.3	17
33	A smooth muscleâ€derived, <scp>Braf</scp> â€driven mouse model of gastrointestinal stromal tumor (<scp>GIST</scp>): evidence for an alternative <scp>GIST</scp> cellâ€ofâ€origin. Journal of Pathology, 2020, 252, 441-450.	2.1	17
34	Protein kinase Aâ€mediated phosphorylation of naked cuticle homolog 2 stimulates cellâ€surface delivery of transforming growth factorâ€i± for epidermal growth factor receptor transactivation. Traffic, 2019, 20, 357-368.	1.3	8
35	Depletion of METTL3 alters cellular and extracellular levels of miRNAs containing m6A consensus sequences. Heliyon, 2021, 7, e08519.	1.4	7
36	Are supermeres a distinct nanoparticle?. , 2022, 1, .		5

Are supermeres a distinct nanoparticle?. , 2022, 1, . 36