
Subhankar Mukhopadhyay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5798823/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Scavenger receptors in innate immunity. Current Opinion in Immunology, 2002, 14, 123-128.	2.4	448
2	MARCO, TLR2, and CD14 Are Required for Macrophage Cytokine Responses to Mycobacterial Trehalose Dimycolate and Mycobacterium tuberculosis. PLoS Pathogens, 2009, 5, e1000474.	2.1	256
3	Shared genetic effects on chromatin and gene expression indicate a role for enhancer priming in immune response. Nature Genetics, 2018, 50, 424-431.	9.4	253
4	Interaction of Salmonella enterica Serovar Typhimurium with Intestinal Organoids Derived from Human Induced Pluripotent Stem Cells. Infection and Immunity, 2015, 83, 2926-2934.	1.0	221
5	The role of scavenger receptors in pathogen recognition and innate immunity. Immunobiology, 2004, 209, 39-49.	0.8	162
6	Alternative activation of macrophages by IL-4 impairs phagocytosis of pathogens but potentiates microbial-induced signalling and cytokine secretion. Blood, 2010, 115, 353-362.	0.6	156
7	Innate immunity to intracellular pathogens: macrophage receptors and responses to microbial entry. Immunological Reviews, 2011, 240, 11-24.	2.8	137
8	The potential for Toll-like receptors to collaborate with other innate immune receptors. Immunology, 2004, 112, 521-530.	2.0	133
9	C13orf31 (FAMIN) is a central regulator of immunometabolic function. Nature Immunology, 2016, 17, 1046-1056.	7.0	123
10	Preferential Expression of Integrin αvβ8 Promotes Generation of Regulatory T Cells by Mouse CD103+ Dendritic Cells. Gastroenterology, 2011, 141, 1813-1820.	0.6	115
11	Macrophage receptors implicated in the "adaptive―form of innate immunity. Microbes and Infection, 2007, 9, 1680-1687.	1.0	111
12	SR-A/MARCO–mediated ligand delivery enhances intracellular TLR and NLR function, but ligand scavenging from cell surface limits TLR4 response to pathogens. Blood, 2011, 117, 1319-1328.	0.6	108
13	Macrophage Scavenger Receptor A Promotes Tumor Progression in Murine Models of Ovarian and Pancreatic Cancer. Journal of Immunology, 2013, 190, 3798-3805.	0.4	107
14	The interaction of macrophage receptors with bacterial ligands. Expert Reviews in Molecular Medicine, 2006, 8, 1-25.	1.6	101
15	Transcriptional profiling of macrophages derived from monocytes and iPS cells identifies a conserved response to LPS and novel alternative transcription. Scientific Reports, 2015, 5, 12524.	1.6	94
16	αv Integrin expression by DCs is required for Th17 cell differentiation and development of experimental autoimmune encephalomyelitis in mice. Journal of Clinical Investigation, 2010, 120, 4445-4452.	3.9	82
17	Immune Inhibitory Ligand CD200 Induction by TLRs and NLRs Limits Macrophage Activation to Protect the Host from Meningococcal Septicemia. Cell Host and Microbe, 2010, 8, 236-247.	5.1	80
18	MARCO, an innate activation marker of macrophages, is a class A scavenger receptor forNeisseria meningitidis. European Journal of Immunology, 2006, 36, 940-949.	1.6	74

#	Article	IF	CITATIONS
19	Tle1 tumor suppressor negatively regulates inflammation in vivo and modulates NF-κB inflammatory pathway. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1871-1876.	3.3	62
20	GPR35 promotes glycolysis, proliferation, and oncogenic signaling by engaging with the sodium potassium pump. Science Signaling, 2019, 12, .	1.6	58
21	New Variant of Multidrug-Resistant <i>Salmonella enterica</i> Serovar Typhimurium Associated with Invasive Disease in Immunocompromised Patients in Vietnam. MBio, 2018, 9, .	1.8	53
22	Lipid-loaded tumor-associated macrophages sustain tumor growth and invasiveness in prostate cancer. Journal of Experimental Medicine, 2022, 219, .	4.2	53
23	Activation of murine macrophages byNeisseria meningitidisand IFN-Î ³ in vitro: distinct roles of class A scavenger and Toll-like pattern recognition receptors in selective modulation of surface phenotype. Journal of Leukocyte Biology, 2004, 76, 577-584.	1.5	51
24	Loss of IL-10 signaling in macrophages limits bacterial killing driven by prostaglandin E2. Journal of Experimental Medicine, 2020, 217, .	4.2	51
25	Eros is a novel transmembrane protein that controls the phagocyte respiratory burst and is essential for innate immunity. Journal of Experimental Medicine, 2017, 214, 1111-1128.	4.2	50
26	αv Integrins combine with LC3 and atg5 to regulate Toll-like receptor signalling in B cells. Nature Communications, 2016, 7, 10917.	5.8	49
27	Alpha kinase 1 controls intestinal inflammation by suppressing the IL-12/Th1 axis. Nature Communications, 2018, 9, 3797.	5.8	47
28	Induced Pluripotent Stem Cell Derived Macrophages as a Cellular System to Study Salmonella and Other Pathogens. PLoS ONE, 2015, 10, e0124307.	1.1	45
29	Interferon-driven alterations of the host's amino acid metabolism in the pathogenesis of typhoid fever. Journal of Experimental Medicine, 2016, 213, 1061-1077.	4.2	45
30	Macrophage Pattern Recognition Receptors in Immunity, Homeostasis and Self Tolerance. Advances in Experimental Medicine and Biology, 2009, 653, 1-14.	0.8	39
31	SR-A, MARCO and TLRs Differentially Recognise Selected Surface Proteins from <i> Neisseria meningitidis</i> : an Example of Fine Specificity in Microbial Ligand Recognition by Innate Immune Receptors. Journal of Innate Immunity, 2009, 1, 153-163.	1.8	38
32	Sinusoidal Immunity: Macrophages at the Lymphohematopoietic Interface. Cold Spring Harbor Perspectives in Biology, 2015, 7, a016378.	2.3	35
33	Interleukin-22 promotes phagolysosomal fusion to induce protection against <i>Salmonella enterica</i> Typhimurium in human epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10118-10123.	3.3	33
34	Tumor Necrosis Factor α Inhibits Expression of the Iron Regulating Hormone Hepcidin in Murine Models of Innate Colitis. PLoS ONE, 2012, 7, e38136.	1.1	32
35	Formation of distinct chromatin conformation signatures epigenetically regulate macrophage activation. International Immunopharmacology, 2014, 18, 7-11.	1.7	22
36	A Simple Multistep Protocol for Differentiating Human Induced Pluripotent Stem Cells into Functional Macrophages. Methods in Molecular Biology, 2018, 1784, 13-28.	0.4	22

Subhankar Mukhopadhyay

#	Article	IF	CITATIONS
37	An apolipoprotein A-I mimetic targets scavenger receptor A on tumor-associated macrophages. Oncolmmunology, 2013, 2, e24461.	2.1	21
38	The Rab32/BLOC-3–dependent pathway mediates host defense against different pathogens in human macrophages. Science Advances, 2021, 7, .	4.7	21
39	Conditional-ready mouse embryonic stem cell derived macrophages enable the study of essential genes in macrophage function. Scientific Reports, 2015, 5, 8908.	1.6	16
40	Dysregulation of macrophage PEPD in obesity determines adipose tissue fibro-inflammation and insulin resistance. Nature Metabolism, 2022, 4, 476-494.	5.1	16
41	Adipoclast: a multinucleated fat-eating macrophage. BMC Biology, 2021, 19, 246.	1.7	15
42	The role of myeloid receptors on murine plasmacytoid dendritic cells in induction of type I interferon. International Immunopharmacology, 2011, 11, 794-801.	1.7	14
43	Plasma membrane receptors of tissue macrophages: functions and role in pathology. Journal of Pathology, 2020, 250, 656-666.	2.1	14
44	TLE1 Null Mice Have Altered Myeloid and B-Cell Differentiation As Well As Impaired Regulation of Inflammation. Blood, 2012, 120, 1197-1197.	0.6	9
45	Infection Susceptibility in Gastric Intrinsic Factor (Vitamin B ₁₂)-Defective Mice Is Subject to Maternal Influences. MBio, 2016, 7, .	1.8	8
46	Differentiation of Human Induced Pluripotent Stem Cell into Macrophages. Bio-protocol, 2022, 12, e4361.	0.2	2
47	Isolation and Measuring the Function of Professional Phagocytes. Methods in Microbiology, 2010, 37, 195-226.	0.4	0
48	Innate and adaptive immune cross-talk regulates intestinal macrophage activation and drives colitis in mice. Inflammatory Bowel Diseases, 2011, 17, S81.	0.9	0
49	Loss of Reciprocal Regulation of Innate and Adaptive Immunity Causes Colitis in Alpha(V) Integrin-Deficient Mice. Inflammatory Bowel Diseases, 2012, 18, S11.	0.9	0
50	Loss of Reciprocal Regulation of Innate and Adaptive Immunity Causes Colitis in Alpha(V) Integrin-Deficient Mice. Inflammatory Bowel Diseases, 2012, 18, S110.	0.9	0
51	Tu1871 Expression of the Iron Regulating Hormone Hepcidin is Inhibited by Tumor Necrosis Factor a During Innate Murine Colitis. Gastroenterology, 2012, 142, S-865.	0.6	0
52	Role of Eros, a novel transmembrane protein, in regulation of host defence. Lancet, The, 2016, 387, S12.	6.3	0