
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5798589/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Tree-Based Approach to Forecast theÂTotal Nitrogen in Wastewater TreatmentÂPlants. Lecture Notes in Networks and Systems, 2022, , 137-147.	0.5	0
2	Principles, Advances, and Perspectives of Anaerobic Digestion of Lipids. Environmental Science & Technology, 2022, 56, 4749-4775.	4.6	27
3	Effect of Endogenous Methane Production: A Step Forward in the Validation of Biochemical Methane Potential (BMP) Tests. Energies, 2022, 15, 4696.	1.6	4
4	Electron Storage in Electroactive Biofilms. Trends in Biotechnology, 2021, 39, 34-42.	4.9	56
5	Designing a functional rice muffin formulated with prebiotic oligosaccharides and sugar reduction. Food Bioscience, 2021, 40, 100858.	2.0	6
6	Intensification of methane production from waste frying oil in a biogas-lift bioreactor. Renewable Energy, 2021, 168, 1141-1148.	4.3	14
7	Sequencing batch airlift reactors (SBAR): a suitable technology for treatment and valorization of mineral oil wastewaters towards lipids production. Journal of Hazardous Materials, 2021, 409, 124492.	6.5	6
8	Dissolved oxygen concentration as a strategy to select type and composition of bacterial storage lipids produced during oilfield produced water treatment. Environmental Technology and Innovation, 2021, 23, 101693.	3.0	5
9	Zeolite addition to improve biohydrogen production from dark fermentation of C5/C6-sugars and Sargassum sp. biomass. Scientific Reports, 2021, 11, 16350.	1.6	14
10	Corksorb Enhances Alkane Degradation by Hydrocarbonoclastic Bacteria. Frontiers in Microbiology, 2021, 12, 618270.	1.5	1
11	Hydrocarbon Toxicity towards Hydrogenotrophic Methanogens in Oily Waste Streams. Energies, 2021, 14, 4830.	1.6	3
12	In vitro assessment of prebiotic properties of xylooligosaccharides produced by Bacillus subtilis 3610. Carbohydrate Polymers, 2020, 229, 115460.	5.1	26
13	Multi-Walled Carbon Nanotubes Enhance Methanogenesis from Diverse Organic Compounds in Anaerobic Sludge and River Sediments. Applied Sciences (Switzerland), 2020, 10, 8184.	1.3	8
14	Multiple and flexible roles of facultative anaerobic bacteria in microaerophilic oleate degradation. Environmental Microbiology, 2020, 22, 3650-3659.	1.8	4
15	In vitro fermentation of raffinose to unravel its potential as prebiotic ingredient. LWT - Food Science and Technology, 2020, 126, 109322.	2.5	28
16	A Deep Learning Approach to Forecast the Influent Flow in Wastewater Treatment Plants. Lecture Notes in Computer Science, 2020, , 362-373.	1.0	4
17	Garden and food waste co-fermentation for biohydrogen and biomethane production in a two-step hyperthermophilic-mesophilic process. Bioresource Technology, 2019, 278, 180-186.	4.8	66
18	Anaerobic biological fermentation of urine as a strategy to enhance the performance of a microbial electrolysis cell (MEC). Renewable Energy, 2019, 139, 936-943.	4.3	29

#	Article	IF	CITATIONS
19	Inhibition Studies with 2-Bromoethanesulfonate Reveal a Novel Syntrophic Relationship in Anaerobic Oleate Degradation. Applied and Environmental Microbiology, 2019, 85, .	1.4	30
20	Hydrogen Production by Clostridium cellulolyticum a Cellulolytic and Hydrogen-Producing Bacteria Using Sugarcane Bagasse. Waste and Biomass Valorization, 2019, 10, 827-837.	1.8	11
21	Oil and Hydrocarbon-Producing Bacteria. , 2019, , 471-487.		1
22	Influence of carbon anode properties on performance and microbiome of Microbial Electrolysis Cells operated on urine. Electrochimica Acta, 2018, 267, 122-132.	2.6	20
23	Biological treatment of produced water coupled with recovery of neutral lipids. Water Research, 2018, 147, 33-42.	5.3	35
24	Insight into the Role of Facultative Bacteria Stimulated by Microaeration in Continuous Bioreactors Converting LCFA to Methane. Environmental Science & Technology, 2018, 52, 6497-6507.	4.6	38
25	Tuning culturing conditions towards the production of neutral lipids from lubricant-based wastewater in open mixed bacterial communities. Water Research, 2018, 144, 532-542.	5.3	11
26	Improvement of Biomethane Production from Sewage Sludge in Co-digestion with Glycerol and Waste Frying Oil, Using a Design of Experiments. Bioenergy Research, 2018, 11, 763-771.	2.2	15
27	Oil and Hydrocarbon-Producing Bacteria. , 2018, , 1-17.		0
28	Carbon nanotubes accelerate methane production in pure cultures of methanogens and in a syntrophic coculture. Environmental Microbiology, 2017, 19, 2727-2739.	1.8	127
29	Harnessing the Power of PCR Molecular Fingerprinting Methods and Next Generation Sequencing for Understanding Structure and Function in Microbial Communities. Methods in Molecular Biology, 2017, 1620, 225-248.	0.4	1
30	Production of added value bacterial lipids through valorisation of hydrocarbon-contaminated cork waste. Science of the Total Environment, 2017, 605-606, 677-682.	3.9	6
31	Investigating bacterial community changes and organic substrate degradation in microbial fuel cells operating on real human urine. Environmental Science: Water Research and Technology, 2017, 3, 897-904.	1.2	34
32	Toxicity of long chain fatty acids towards acetate conversion by <i>Methanosaeta concilii</i> and <i>Methanosarcina mazei</i> . Microbial Biotechnology, 2016, 9, 514-518.	2.0	52
33	A design of experiments to assess phosphorous removal and crystal properties in struvite precipitation of source separated urine using different Mg sources. Chemical Engineering Journal, 2016, 298, 146-153.	6.6	117
34	Boosting dark fermentation with co-cultures of extreme thermophiles for biohythane production from garden waste. Bioresource Technology, 2016, 219, 132-138.	4.8	47
35	Rhodococcus opacus B4: a promising bacterium for production of biofuels and biobased chemicals. AMB Express, 2016, 6, 35.	1.4	43
36	Valorization of lubricant-based wastewater for bacterial neutral lipids production: Growth-linked biosynthesis. Water Research, 2016, 101, 17-24.	5.3	13

#	Article	IF	CITATIONS
37	Conversion of C _n -Unsaturated into C _{n-2} -Saturated LCFA Can Occur Uncoupled from Methanogenesis in Anaerobic Bioreactors. Environmental Science & Technology, 2016, 50, 3082-3090.	4.6	51
38	Continuous fungal treatment of non-sterile veterinary hospital effluent: pharmaceuticals removal and microbial community assessment. Applied Microbiology and Biotechnology, 2016, 100, 2401-2415.	1.7	46
39	Biohythane production from marine macroalgae Sargassum sp. coupling dark fermentation and anaerobic digestion. Bioresource Technology, 2015, 190, 251-256.	4.8	36
40	Study of 16 Portuguese activated sludge systems based on filamentous bacteria populations and their relationships with environmental parameters. Applied Microbiology and Biotechnology, 2015, 99, 5307-5316.	1.7	47
41	Ultrasound intensification suppresses the need of methanol excess during the biodiesel production with Lipozyme TL-IM. Ultrasonics Sonochemistry, 2015, 27, 530-535.	3.8	55
42	Anaerobic Digestion of Lipid-Rich Waste. Springer Protocols, 2015, , 221-236.	0.1	3
43	On the independence of hydrogen production from methanogenic suppressor in olive mill wastewater. International Journal of Hydrogen Energy, 2014, 39, 6402-6406.	3.8	9
44	Anaerobic granular sludge as a biocatalyst for 1,3-propanediol production from glycerol in continuous bioreactors. Bioresource Technology, 2014, 155, 28-33.	4.8	31
45	Influence of tetracycline on the microbial community composition and activity of nitrifying biofilms. Chemosphere, 2014, 117, 295-302.	4.2	41
46	A methodology for a quantitative interpretation of DGGE with the help of mathematical modelling: application in biohydrogen production. Water Science and Technology, 2014, 69, 511-517.	1.2	3
47	Long-term acclimation of anaerobic sludges for high-rate methanogenesis from LCFA. Biomass and Bioenergy, 2014, 67, 297-303.	2.9	42
48	Endurance of methanogenic archaea in anaerobic bioreactors treating oleate-based wastewater. Applied Microbiology and Biotechnology, 2013, 97, 2211-2218.	1.7	22
49	The Role of Marine Anaerobic Bacteria and Archaea in Bioenergy Production. , 2013, , 445-469.		3
50	Biomethanation Potential of Biological and Other Wastes. , 2013, , 369-396.		1
51	Activity and Viability of Methanogens in Anaerobic Digestion of Unsaturated and Saturated Long-Chain Fatty Acids. Applied and Environmental Microbiology, 2013, 79, 4239-4245.	1.4	90
52	Influence of carrier concentration on the control of <i>Galactomyces geotrichum</i> bulking and bacterial community of biofilm reactors. Desalination and Water Treatment, 2012, 41, 325-334.	1.0	7
53	Influence of adsorption and anaerobic granular sludge characteristics on long chain fatty acids inhibition process. Water Research, 2012, 46, 5268-5278.	5.3	64
54	Influence of the organic loading rate on the growth of <i>Galactomyces geotrichum</i> in activated sludge. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Science. 365-569.	0.9	4

#	Article	IF	CITATIONS
55	Bioaugmentation of Sewage Sludge with <i>Trametes versicolor</i> in Solid-Phase Biopiles Produces Degradation of Pharmaceuticals and Affects Microbial Communities. Environmental Science & Technology, 2012, 46, 12012-12020.	4.6	50
56	Analysis of the microbial community of the biocathode of a hydrogen-producing microbial electrolysis cell. Applied Microbiology and Biotechnology, 2011, 92, 1083-1093.	1.7	157
57	Strategies to suppress hydrogenâ€consuming microorganisms affect macro and micro scale structure and microbiology of granular sludge. Biotechnology and Bioengineering, 2011, 108, 1766-1775.	1.7	23
58	Thermophilic co-digestion of organic fraction of municipal solid wastes with FOG wastes from a sewage treatment plant: Reactor performance and microbial community monitoring. Bioresource Technology, 2011, 102, 4734-4741.	4.8	78
59	Production of fermented cheese whey-based beverage using kefir grains as starter culture: Evaluation of morphological and microbial variations. Bioresource Technology, 2010, 101, 8843-8850.	4.8	92
60	Biofilms formed on humic substances: Response to flow conditions and carbon concentrations. Bioresource Technology, 2010, 101, 6888-6894.	4.8	16
61	Engineered heat treated methanogenic granules: A promising biotechnological approach for extreme thermophilic biohydrogen production. Bioresource Technology, 2010, 101, 9577-9586.	4.8	52
62	Waste lipids to energy: how to optimize methane production from longâ€chain fatty acids (LCFA). Microbial Biotechnology, 2009, 2, 538-550.	2.0	233
63	Detection and quantification of long chain fatty acids in liquid and solid samples and its relevance to understand anaerobic digestion of lipids. Bioresource Technology, 2009, 100, 91-96.	4.8	92
64	Effects of the acidogenic biomass on the performance of an anaerobic membrane bioreactor for wastewater treatment. Bioresource Technology, 2009, 100, 1951-1956.	4.8	43
65	Enhancement of methane production from long chain fatty acid based effluents. Bioresource Technology, 2008, 99, 4086-4095.	4.8	75
66	Anaerobic microbial LCFA degradation in bioreactors. Water Science and Technology, 2008, 57, 439-444.	1.2	31
67	Microbial Communities Involved in Anaerobic Degradation of Unsaturated or Saturated Long-Chain Fatty Acids. Applied and Environmental Microbiology, 2007, 73, 1054-1064.	1.4	108
68	Molecular assessment of complex microbial communities degrading long chain fatty acids in methanogenic bioreactors. FEMS Microbiology Ecology, 2007, 60, 252-265.	1.3	114
69	Anaerobic biodegradation of oleic and palmitic acids: Evidence of mass transfer limitations caused by long chain fatty acid accumulation onto the anaerobic sludge. Biotechnology and Bioengineering, 2005, 92, 15-23.	1.7	256
70	Development of image analysis techniques as a tool to detect and quantify morphological changes in anaerobic sludge: II. Application to a granule deterioration process triggered by contact with oleic acid. Biotechnology and Bioengineering, 2004, 87, 194-199.	1.7	26
71	Mineralization of LCFA associated with anaerobic sludge: Kinetics, enhancement of methanogenic activity, and effect of VFA. Biotechnology and Bioengineering, 2004, 88, 502-511.	1.7	165
72	Operation of an anaerobic filter and an EGSB reactor for the treatment of an oleic acid-based effluent: influence of inoculum quality. Process Biochemistry, 2002, 37, 1025-1031.	1.8	32

#	Article	IF	CITATIONS
73	Molecular monitoring of microbial diversity in expanded granular sludge bed (EGSB) reactors treating oleic acid. FEMS Microbiology Ecology, 2002, 41, 95-103.	1.3	53
74	Anaerobic degradation of oleic acid by suspended and granular sludge: identification of palmitic acid as a key intermediate. Water Science and Technology, 2002, 45, 139-44.	1.2	7
75	Effect of lipids and oleic acid on biomass development in anaerobic fixed-bed reactors. Part I: Biofilm growth and activity. Water Research, 2001, 35, 255-263.	5.3	81
76	Effects of lipids and oleic acid on biomass development in anaerobic fixed-bed reactors. Part II: Oleic acid toxicity and biodegradability. Water Research, 2001, 35, 264-270.	5.3	114
77	Degradation of Oleic Acid in Anaerobic Filters: The Effect of Inoculum Acclimatization and Biomass Recirculation. Water Environment Research, 2001, 73, 612-621.	1.3	33
78	Influence of physico-chemical properties of porous microcarriers on the adhesion of an anaerobic consortium. Journal of Industrial Microbiology and Biotechnology, 2000, 24, 181-186.	1.4	35
79	A New Device to Select Microcarriers for Biomass Immobilization: Application to an Anaerobic Consortium. Water Environment Research, 1999, 71, 209-217.	1.3	19
80	A new method to study interactions between biomass and packing material in anaerobic filters. Biotechnology Letters, 1998, 12, 277-283.	0.5	10