Eli Sloutskin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5798365/publications.pdf Version: 2024-02-01

FU SLOUTSKIN

#	Article	IF	CITATIONS
1	Salt-induced stability and modified interfacial energetics in self-faceting emulsion droplets. Journal of Colloid and Interface Science, 2022, 621, 131-138.	9.4	6
2	Faceting and Flattening of Emulsion Droplets: A Mechanical Model. Physical Review Letters, 2021, 126, 038001.	7.8	22
3	GarcÃa-Aguilar <i>etÂal.</i> Reply:. Physical Review Letters, 2021, 126, 259802.	7.8	3
4	Anomalous Temperature-Controlled Concave–Convex Switching of Curved Oil–Water Menisci. Journal of Physical Chemistry Letters, 2021, 12, 6834-6839.	4.6	2
5	Polyhedral liquid droplets: Recent advances in elucidation and application. Current Opinion in Colloid and Interface Science, 2020, 49, 107-117.	7.4	11
6	Polyhedral Water Droplets: Shape Transitions and Mechanism. Journal of the American Chemical Society, 2020, 142, 8672-8678.	13.7	11
7	Nanoparticle Positioning on Liquid and Polymerized Faceted Droplets. Journal of Physical Chemistry C, 2019, 123, 28192-28200.	3.1	6
8	Precise Self-Positioning of Colloidal Particles on Liquid Emulsion Droplets. Langmuir, 2019, 35, 13053-13061.	3.5	10
9	Periodic buckling and grain boundary slips in a colloidal model of solid friction. Soft Matter, 2019, 15, 5227-5233.	2.7	4
10	Nanostructures, Faceting, and Splitting in Nanoliter to Yoctoliter Liquid Droplets. Nano Letters, 2019, 19, 3161-3168.	9.1	22
11	Imaging of nanoparticle dynamics in live and apoptotic cells using temporally-modulated polarization. Scientific Reports, 2019, 9, 1650.	3.3	4
12	Self-faceting of emulsion droplets as a route to solid icosahedra and other polyhedra. Journal of Colloid and Interface Science, 2019, 538, 541-545.	9.4	24
13	Temperature-Tuned Faceting and Shape Changes in Liquid Alkane Droplets. Langmuir, 2017, 33, 1305-1314.	3.5	34
14	Label free microscopy with enhanced localization performance based upon temporally modulated polarization. , 2017, , .		0
15	Axial Confocal Tomography of Capillary-Contained Colloidal Structures. Langmuir, 2017, 33, 13343-13349.	3.5	2
16	Photo-Crosslinkable Colloids: From Fluid Structure and Dynamics of Spheres to Suspensions of Ellipsoids. Gels, 2016, 2, 29.	4.5	8
17	Dipolar colloids in apolar media: direct microscopy of two-dimensional suspensions. Scientific Reports, 2016, 6, 28578.	3.3	9
18	From faceted vesicles to liquid icoshedra: Where topology and crystallography meet. Current Opinion in Colloid and Interface Science, 2016, 22, 35-40.	7.4	31

ELI SLOUTSKIN

#	Article	IF	CITATIONS
19	Optical-tweezing-based linear-optics nanoscopy. Optics Express, 2016, 24, 8013.	3.4	6
20	Direct Imaging of Vibrations in Colloidal Crystals: In Equilibrium and in a Steady Drift. Journal of Physical Chemistry C, 2016, 120, 8392-8398.	3.1	2
21	How faceted liquid droplets grow tails. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 493-496.	7.1	82
22	Crystallization and reentrant melting of charged colloids in nonpolar solvents. Physical Review E, 2015, 91, 030301.	2.1	32
23	Layering in sedimenting nanoparticle suspensions: The order-inducing role of randomness. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 483, 248-256.	4.7	4
24	Denser fluids of charge-stabilized colloids form denser sediments. Soft Matter, 2014, 10, 4913-4921.	2.7	5
25	Critical Onset of Layering in Sedimenting Suspensions of Nanoparticles. Physical Review Letters, 2014, 112, 188301.	7.8	8
26	Surfactant-Induced Phases in Water-Supported Alkane Monolayers: I. Thermodynamics. Langmuir, 2014, 30, 8000-8009.	3.5	4
27	Surfactant-Induced Phases in Water-Supported Alkane Monolayers: II. Structure. Langmuir, 2014, 30, 8010-8019.	3.5	11
28	Locating particles accurately in microscope images requires image-processing kernels to be rotationally symmetric. Optics Express, 2013, 21, 30755.	3.4	20
29	Dense colloidal fluids form denser amorphous sediments. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5769-5773.	7.1	25
30	Highly anisotropic thermal expansion in molecular films of dicarboxylic fatty acids. Physical Review B, 2012, 85, .	3.2	4
31	Non-crystalline colloidal clusters in two dimensions: size distributions and shapes. Soft Matter, 2012, 8, 2924.	2.7	8
32	Coiled to Diffuse: Brownian Motion of a Helical Bacterium. Langmuir, 2012, 28, 12941-12947.	3.5	39
33	Hydrogen-Bonded Order in Mercury-Supported Monolayers of End-Functionalized Alkanes. Journal of Physical Chemistry C, 2011, 115, 25451-25463.	3.1	4
34	Fluid Suspensions of Colloidal Ellipsoids: Direct Structural Measurements. Physical Review Letters, 2011, 107, 238301.	7.8	20
35	Modification of deeply buried hydrophobic interfaces by ionic surfactants. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5522-5525.	7.1	58
36	Direct structural observation of a molecular junction by high-energy x-ray reflectometry. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2541-2545.	7.1	20

ELI SLOUTSKIN

#	Article	IF	CITATIONS
37	Structure of Mercaptobiphenyl Monolayers on Mercury. Journal of Physical Chemistry B, 2005, 109, 12534-12543.	2.6	19
38	Surface freezing of chain molecules at the liquid–liquid and liquid–air interfaces. Faraday Discussions, 2005, 129, 339-352.	3.2	65
39	Surface Layering in Ionic Liquids:Â An X-ray Reflectivity Study. Journal of the American Chemical Society, 2005, 127, 7796-7804.	13.7	277