Gabor Valcz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5798193/publications.pdf

Version: 2024-02-01

567281 713466 22 702 15 21 citations h-index g-index papers 22 22 22 1198 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Colorectal adenoma and cancer detection based on altered methylation pattern of <i>SFRP1, SFRP2, SDC2</i> , and <i>PRIMA1</i> in plasma samples. Epigenetics, 2017, 12, 751-763.	2.7	92
2	Detection of Methylated Septin 9 in Tissue and Plasma of Colorectal Patients with Neoplasia and the Relationship to the Amount of Circulating Cell-Free DNA. PLoS ONE, 2014, 9, e115415.	2.5	87
3	Aberrant DNA methylation of WNT pathway genes in the development and progression of CIMP-negative colorectal cancer. Epigenetics, $2016, 11, 588-602$.	2.7	67
4	DNA hypermethylation and decreased mRNA expression of MAL, PRIMA1, PTGDR and SFRP1 in colorectal adenoma and cancer. BMC Cancer, 2015, 15, 736.	2.6	53
5	Aging related methylation influences the gene expression of key control genes in colorectal cancer and adenoma. World Journal of Gastroenterology, 2016, 22, 10325.	3.3	49
6	Gene promoter and exon DNA methylation changes in colon cancer development – mRNA expression and tumor mutation alterations. BMC Cancer, 2018, 18, 695.	2.6	45
7	Comprehensive DNA Methylation Analysis Reveals a Common Ten-Gene Methylation Signature in Colorectal Adenomas and Carcinomas. PLoS ONE, 2015, 10, e0133836.	2.5	42
8	Genome-wide expression profiling in colorectal cancer focusing on lncRNAs in the adenoma-carcinoma transition. BMC Cancer, 2019, 19, 1059.	2.6	36
9	Exosomes in colorectal carcinoma formation: ALIX under the magnifying glass. Modern Pathology, 2016, 29, 928-938.	5 . 5	33
10	Myofibroblast-Derived SFRP1 as Potential Inhibitor of Colorectal Carcinoma Field Effect. PLoS ONE, 2014, 9, e106143.	2.5	32
11	<i>En bloc</i> release of MVBâ€like small extracellular vesicle clusters by colorectal carcinoma cells. Journal of Extracellular Vesicles, 2019, 8, 1596668.	12.2	29
12	The Role of the Bone Marrow Derived Mesenchymal Stem Cells in Colonic Epithelial Regeneration. Pathology and Oncology Research, 2011, 17, 11-16.	1.9	24
13	Perspective: bidirectional exosomal transport between cancer stem cells and their fibroblast-rich microenvironment during metastasis formation. Npj Breast Cancer, 2018, 4, 18.	5.2	23
14	Promoter Hypermethylation-Related Reduced Somatostatin Production Promotes Uncontrolled Cell Proliferation in Colorectal Cancer. PLoS ONE, 2015, 10, e0118332.	2.5	22
15	S-Adenosylmethionine Treatment of Colorectal Cancer Cell Lines Alters DNA Methylation, DNA Repair and Tumor Progression-Related Gene Expression. Cells, 2020, 9, 1864.	4.1	16
16	Increase of α-SMA+ and CK+ Cells as an Early Sign of Epithelial-Mesenchymal Transition during Colorectal Carcinogenesis. Pathology and Oncology Research, 2012, 18, 371-376.	1.9	13
17	Comprehensive DNA Methylation and Mutation Analyses Reveal a Methylation Signature in Colorectal Sessile Serrated Adenomas. Pathology and Oncology Research, 2017, 23, 589-594.	1.9	13
18	Lymphoid aggregates may contribute to the migration and epithelial commitment of bone marrow-derived cells in colonic mucosa. Journal of Clinical Pathology, 2011, 64, 771-775.	2.0	8

#	Article	IF	CITATION
19	Elevated Osteopontin Expression and Proliferative/Apoptotic Ratio in the Colorectal Adenoma–Dysplasia–Carcinoma Sequence. Pathology and Oncology Research, 2010, 16, 541-545.	1.9	7
20	A Liquid Biopsy-Based Approach for Monitoring Treatment Response in Post-Operative Colorectal Cancer Patients. International Journal of Molecular Sciences, 2022, 23, 3774.	4.1	6
21	Folic Acid Treatment Directly Influences the Genetic and Epigenetic Regulation along with the Associated Cellular Maintenance Processes of HT-29 and SW480 Colorectal Cancer Cell Lines. Cancers, 2022, 14, 1820.	3.7	5
22	Association of hepatocyte-derived growth factor receptor/caudal type homeobox 2 co-expression with mucosal regeneration in active ulcerative colitis. World Journal of Gastroenterology, 2015, 21, 8569.	3.3	0