Malcolm J Mcconville

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5797445/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MR1 presents microbial vitamin B metabolites to MAIT cells. Nature, 2012, 491, 717-723.	27.8	1,158
2	Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nature Communications, 2015, 6, 7320.	12.8	683
3	Microbiota-Derived Short-Chain Fatty Acids Promote the Memory Potential of Antigen-Activated CD8+ T Cells. Immunity, 2019, 51, 285-297.e5.	14.3	378
4	CD1d-Restricted Immunoglobulin G Formation to GPI-Anchored Antigens Mediated by NKT Cells. Science, 1999, 283, 225-229.	12.6	368
5	MyD88 is essential for clearance ofLeishmania major: possible role for lipophosphoglycan and Toll-like receptor 2 signaling. European Journal of Immunology, 2003, 33, 2822-2831.	2.9	293
6	Mitochondrial metabolism of sexual and asexual blood stages of the malaria parasite Plasmodium falciparum. BMC Biology, 2013, 11, 67.	3.8	238
7	Mitochondrial Metabolism of Glucose and Glutamine Is Required for Intracellular Growth of Toxoplasma gondii. Cell Host and Microbe, 2012, 12, 682-692.	11.0	210
8	Secretory Pathway of Trypanosomatid Parasites. Microbiology and Molecular Biology Reviews, 2002, 66, 122-154.	6.6	207
9	Plasma Lipidomic Profiles Improve on Traditional Risk Factors for the Prediction of Cardiovascular Events in Type 2 Diabetes Mellitus. Circulation, 2016, 134, 1637-1650.	1.6	205
10	Distinct Protein Classes Including Novel Merozoite Surface Antigens in Raft-like Membranes of Plasmodium falciparum. Journal of Biological Chemistry, 2005, 280, 40169-40176.	3.4	195
11	Normalizing and Integrating Metabolomics Data. Analytical Chemistry, 2012, 84, 10768-10776.	6.5	183
12	Living in a phagolysosome; metabolism of Leishmania amastigotes. Trends in Parasitology, 2007, 23, 368-375.	3.3	182
13	The Leishmania-macrophage interaction: a metabolic perspective. Cellular Microbiology, 2008, 10, 301-308.	2.1	163
14	Induction of a Stringent Metabolic Response in Intracellular Stages of Leishmania mexicana Leads to Increased Dependence on Mitochondrial Metabolism. PLoS Pathogens, 2014, 10, e1003888.	4.7	142
15	Virulence of Leishmania major in macrophages and mice requires the gluconeogenic enzyme fructose-1,6-bisphosphatase. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5502-5507.	7.1	139
16	Apicoplast and Endoplasmic Reticulum Cooperate in Fatty Acid Biosynthesis in Apicomplexan Parasite Toxoplasma gondii. Journal of Biological Chemistry, 2012, 287, 4957-4971.	3.4	138
17	Recent developments in the cell biology and biochemistry of glycosylphosphatidylinositol lipids (Review). Molecular Membrane Biology, 2000, 17, 1-16.	2.0	136
18	An Efficient Single Phase Method for the Extraction of Plasma Lipids. Metabolites, 2015, 5, 389-403.	2.9	136

#	Article	IF	CITATIONS
19	Surface Determinants of Leishmania Parasites and their Role in Infectivity in the Mammalian Host. Current Molecular Medicine, 2004, 4, 649-665.	1.3	134
20	Metabolic Pathways Required for the Intracellular Survival of <i>Leishmania</i> . Annual Review of Microbiology, 2011, 65, 543-561.	7.3	125
21	Characterization of Metabolically Quiescent Leishmania Parasites in Murine Lesions Using Heavy Water Labeling. PLoS Pathogens, 2015, 11, e1004683.	4.7	122
22	PimE Is a Polyprenol-phosphate-mannose-dependent Mannosyltransferase That Transfers the Fifth Mannose of Phosphatidylinositol Mannoside in Mycobacteria. Journal of Biological Chemistry, 2006, 281, 25143-25155.	3.4	118
23	Atypical lipid composition in the purified relict plastid (apicoplast) of malaria parasites. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7506-7511.	7.1	117
24	Cell wall integrity is linked to mitochondria and phospholipid homeostasis in <i>Candida albicans</i> through the activity of the postâ€ŧranscriptional regulator Ccr4â€₽op2. Molecular Microbiology, 2011, 79, 968-989.	2.5	115
25	BCKDH: The Missing Link in Apicomplexan Mitochondrial Metabolism Is Required for Full Virulence of Toxoplasma gondii and Plasmodium berghei. PLoS Pathogens, 2014, 10, e1004263.	4.7	115
26	<i>Legionella pneumophila</i> S1P-lyase targets host sphingolipid metabolism and restrains autophagy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1901-1906.	7.1	115
27	Decreased K13 Abundance Reduces Hemoglobin Catabolism and Proteotoxic Stress, Underpinning Artemisinin Resistance. Cell Reports, 2019, 29, 2917-2928.e5.	6.4	113
28	Delineation of Three Pathways of Glycosylphosphatidylinositol Biosynthesis in Leishmania mexicana. Journal of Biological Chemistry, 1998, 273, 4245-4257.	3.4	107
29	Comprehensive Profiling and Quantitation of Amine Group Containing Metabolites. Analytical Chemistry, 2011, 83, 7523-7530.	6.5	107
30	Porphyromonas gingivalis and Treponema denticola Exhibit Metabolic Symbioses. PLoS Pathogens, 2014, 10, e1003955.	4.7	107
31	The major surface antigens of Entamoeba histolytica trophozoites are GPI-anchored proteophosphoglycans. Journal of Molecular Biology, 2000, 297, 409-420.	4.2	106
32	Function and assembly of the Leishmania surface coat. International Journal for Parasitology, 2001, 31, 899-908.	3.1	106
33	Oocyst wall formation and composition in coccidian parasites. Memorias Do Instituto Oswaldo Cruz, 2009, 104, 281-289.	1.6	105
34	Humans Lack iGb3 Due to the Absence of Functional iGb3-Synthase: Implications for NKT Cell Development and Transplantation. PLoS Biology, 2008, 6, e172.	5.6	102
35	Identification of a peptide synthetase involved in the biosynthesis of glycopeptidolipids of Mycobacterium smegmatis. Molecular Microbiology, 2002, 33, 1244-1253.	2.5	101
36	Large-scale plasma lipidomic profiling identifies lipids that predict cardiovascular events in secondary prevention. JCI Insight, 2018, 3, .	5.0	100

#	Article	IF	CITATIONS
37	Regulated Degradation of an Endoplasmic Reticulum Membrane Protein in a Tubular Lysosome in <i>Leishmania mexicana</i> . Molecular Biology of the Cell, 2001, 12, 2364-2377.	2.1	97
38	Sengers Syndrome-Associated Mitochondrial Acylglycerol Kinase Is a Subunit of the Human TIM22 Protein Import Complex. Molecular Cell, 2017, 67, 457-470.e5.	9.7	96
39	Secondary Acylation of Klebsiella pneumoniae Lipopolysaccharide Contributes to Sensitivity to Antibacterial Peptides. Journal of Biological Chemistry, 2007, 282, 15569-15577.	3.4	95
40	A Toxoplasma gondii Gluconeogenic Enzyme Contributes to Robust Central Carbon Metabolism and Is Essential for Replication and Virulence. Cell Host and Microbe, 2015, 18, 210-220.	11.0	95
41	The Reductase That Catalyzes Mycolic Motif Synthesis Is Required for Efficient Attachment of Mycolic Acids to Arabinogalactan. Journal of Biological Chemistry, 2007, 282, 11000-11008.	3.4	94
42	Drug resistance in Giardia duodenalis. Biotechnology Advances, 2015, 33, 888-901.	11.7	94
43	Compartmentalization of Lipid Biosynthesis in Mycobacteria. Journal of Biological Chemistry, 2005, 280, 21645-21652.	3.4	92
44	Recognition of the major cell surface glycoconjugates of Leishmania parasites by the human serum mannan-binding protein. Molecular and Biochemical Parasitology, 1994, 66, 319-328.	1.1	91
45	Evidence That Intracellular β1-2 Mannan Is a Virulence Factor in Leishmania Parasites. Journal of Biological Chemistry, 2003, 278, 40757-40763.	3.4	88
46	Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5767-5772.	7.1	88
47	THE BOTTOM-ICE MICROALGAL COMMUNITY FROM ANNUAL ICE IN THE INSHORE WATERS OF EAST ANTARCTICA1. Journal of Phycology, 1983, 19, 431-439.	2.3	85
48	Isotopomer Profiling of Leishmania mexicana Promastigotes Reveals Important Roles for Succinate Fermentation and Aspartate Uptake in Tricarboxylic Acid Cycle (TCA) Anaplerosis, Glutamate Synthesis, and Growth. Journal of Biological Chemistry, 2011, 286, 27706-27717.	3.4	84
49	Metabolomics-Based Screening of the Malaria Box Reveals both Novel and Established Mechanisms of Action. Antimicrobial Agents and Chemotherapy, 2016, 60, 6650-6663.	3.2	82
50	Stage-Specific Changes in Plasmodium Metabolism Required for Differentiation and Adaptation to Different Host and Vector Environments. PLoS Pathogens, 2016, 12, e1006094.	4.7	82
51	Evidence that free GPI glycolipids are essential for growth of Leishmania mexicana. EMBO Journal, 1999, 18, 2746-2755.	7.8	81
52	NLRP1 restricts butyrate producing commensals to exacerbate inflammatory bowel disease. Nature Communications, 2018, 9, 3728.	12.8	81
53	Leishmania mexicana Mutants Lacking Glycosylphosphatidylinositol (GPI):Protein Transamidase Provide Insights into the Biosynthesis and Functions of GPI-anchored Proteins. Molecular Biology of the Cell, 2000, 11, 1183-1195.	2.1	78
54	The intracellular parasite <scp><i>T</i></scp> <i>oxoplasma gondii</i> depends on the synthesis of longâ€chain and very longâ€chain unsaturated fatty acids not supplied by the host cell. Molecular Microbiology, 2015, 97, 64-76.	2.5	77

#	Article	IF	CITATIONS
55	Delayed death in the malaria parasite Plasmodium falciparum is caused by disruption of prenylation-dependent intracellular trafficking. PLoS Biology, 2019, 17, e3000376.	5.6	73
56	Regulation of Starch Stores by a Ca2+-Dependent Protein Kinase Is Essential for Viable Cyst Development in Toxoplasma gondii. Cell Host and Microbe, 2015, 18, 670-681.	11.0	71
57	Metabolic Dysregulation Induced in <i>Plasmodium falciparum</i> by Dihydroartemisinin and Other Front-Line Antimalarial Drugs. Journal of Infectious Diseases, 2016, 213, 276-286.	4.0	71
58	Leishmania carbon metabolism in the macrophage phagolysosome- feast or famine?. F1000Research, 2015, 4, 938.	1.6	71
59	Analysis of a New Mannosyltransferase Required for the Synthesis of Phosphatidylinositol Mannosides and Lipoarbinomannan Reveals Two Lipomannan Pools in Corynebacterineae. Journal of Biological Chemistry, 2008, 283, 6773-6782.	3.4	69
60	Antibiotic resistance and host immune evasion in <i>Staphylococcus aureus</i> mediated by a metabolic adaptation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3722-3727.	7.1	69
61	The glycoinositolphospholipid profiles of two Leishmania major strains that differ in lipophosphoglycan expression. Molecular and Biochemical Parasitology, 1990, 38, 57-67.	1.1	67
62	Evidence That Intracellular Stages of Leishmania major Utilize Amino Sugars as a Major Carbon Source. PLoS Pathogens, 2010, 6, e1001245.	4.7	67
63	Host Reticulocytes Provide Metabolic Reservoirs That Can Be Exploited by Malaria Parasites. PLoS Pathogens, 2015, 11, e1004882.	4.7	67
64	The Plasmodium falciparum transcriptome in severe malaria reveals altered expression of genes involved in important processes including surface antigen–encoding var genes. PLoS Biology, 2018, 16, e2004328.	5.6	67
65	Alveolate Mitochondrial Metabolic Evolution: Dinoflagellates Force Reassessment of the Role of Parasitism as a Driver of Change in Apicomplexans. Molecular Biology and Evolution, 2013, 30, 123-139.	8.9	65
66	Protein kinase A negatively regulates Ca2+ signalling in Toxoplasma gondii. PLoS Biology, 2018, 16, e2005642.	5.6	65
67	Identification of a Novel Protein with a Role in Lipoarabinomannan Biosynthesis in Mycobacteria. Journal of Biological Chemistry, 2006, 281, 9011-9017.	3.4	63
68	PyMS: a Python toolkit for processing of gas chromatography-mass spectrometry (GC-MS) data. Application and comparative study of selected tools. BMC Bioinformatics, 2012, 13, 115.	2.6	63
69	Central carbon metabolism of <i>Leishmania</i> parasites. Parasitology, 2010, 137, 1303-1313.	1.5	62
70	Recognition and Detoxification of the Insecticide DDT by Drosophila melanogaster Glutathione S-Transferase D1. Journal of Molecular Biology, 2010, 399, 358-366.	4.2	62
71	Identification of a Methyltransferase from Mycobacterium smegmatis Involved in Glycopeptidolipid Synthesis. Journal of Biological Chemistry, 2000, 275, 24900-24906.	3.4	61
72	Lipophosphoglycan expression and virulence in Ricin-resistant variants of Leishmania major. Molecular and Biochemical Parasitology, 1990, 40, 255-267.	1.1	59

#	Article	IF	CITATIONS
73	Function of Phosphatidylinositol in Mycobacteria. Journal of Biological Chemistry, 2005, 280, 10981-10987.	3.4	58
74	A Unique Thymic Fibroblast Population Revealed by the Monoclonal Antibody MTS-15. Journal of Immunology, 2007, 178, 4956-4965.	0.8	58
75	Metabolomic analysis of trypanosomatid protozoa. Molecular and Biochemical Parasitology, 2012, 181, 73-84.	1.1	54
76	The natural function of the malaria parasite's chloroquine resistance transporter. Nature Communications, 2020, 11, 3922.	12.8	53
77	Serum amyloid P colocalizes with apolipoproteins in human atheroma: functional implications. Journal of Lipid Research, 2007, 48, 2162-2171.	4.2	49
78	Membrane protein SMP-1 is required for normal flagellum function in <i>Leishmania</i> . Journal of Cell Science, 2010, 123, 544-554.	2.0	48
79	Identification of Plant-like Galactolipids in Chromera velia, a Photosynthetic Relative of Malaria Parasites. Journal of Biological Chemistry, 2011, 286, 29893-29903.	3.4	48
80	Acetylation of Trehalose Mycolates Is Required for Efficient MmpL-Mediated Membrane Transport in Corynebacterineae. ACS Chemical Biology, 2015, 10, 734-746.	3.4	48
81	Analysis of Ca ² ⁺ mediated signaling regulating <i>Toxoplasma</i> infectivity reveals complex relationships between key molecules. Cellular Microbiology, 2017, 19, e12685.	2.1	48
82	Application of dynamic metabolomics to examine inÂvivo skeletal muscle glucose metabolism in the chronically high-fat fed mouse. Biochemical and Biophysical Research Communications, 2015, 462, 27-32.	2.1	47
83	Phospholipase A2 activity during the replication cycle of the flavivirus West Nile virus. PLoS Pathogens, 2018, 14, e1007029.	4.7	47
84	Apicoplast-Localized Lysophosphatidic Acid Precursor Assembly Is Required for Bulk Phospholipid Synthesis in Toxoplasma gondii and Relies on an Algal/Plant-Like Glycerol 3-Phosphate Acyltransferase. PLoS Pathogens, 2016, 12, e1005765.	4.7	47
85	Targeting of the GRIP domain to the trans-Golgi network is conserved from protists to animals. European Journal of Cell Biology, 2002, 81, 485-495.	3.6	45
86	Autocrine IFN-I inhibits isocitrate dehydrogenase in the TCA cycle of LPS-stimulated macrophages. Journal of Clinical Investigation, 2019, 129, 4239-4244.	8.2	45
87	Pharmacokinetics of a single 1g dose of azithromycin in rectal tissue in men. PLoS ONE, 2017, 12, e0174372.	2.5	45
88	Intracellular trafficking of glycosylphosphatidylinositol (GPI)-anchored proteins and free GPIs in Leishmania mexicana. Biochemical Journal, 2002, 363, 365-375.	3.7	44
89	Calcineurin is required for <i>Leishmania major</i> stress response pathways and for virulence in the mammalian host. Molecular Microbiology, 2011, 80, 471-480.	2.5	44
90	Intracellular growth and pathogenesis of <i>Leishmania</i> parasites. Essays in Biochemistry, 2011, 51, 81-95.	4.7	40

#	Article	IF	CITATIONS
91	Developmental changes in lysosome morphology and function Leishmania parasites. International Journal for Parasitology, 2002, 32, 1435-1445.	3.1	39
92	A sample preparation protocol for 1H nuclear magnetic resonance studies of water-soluble metabolites in blood and urine. Analytical Biochemistry, 2010, 398, 263-265.	2.4	39
93	The tyrosine transporter of Toxoplasma gondii is a member of the newly defined apicomplexan amino acid transporter (ApiAT) family. PLoS Pathogens, 2019, 15, e1007577.	4.7	39
94	Mutations in <i>pimE</i> Restore Lipoarabinomannan Synthesis and Growth in a <i>Mycobacterium smegmatis lpqW</i> Mutant. Journal of Bacteriology, 2008, 190, 3690-3699.	2.2	38
95	Identification of inhibitors that dually target the new permeability pathway and dihydroorotate dehydrogenase in the blood stage of Plasmodium falciparum. Scientific Reports, 2016, 6, 37502.	3.3	38
96	An apically located hybrid guanylate cyclase–ATPase is critical for the initiation of Ca2+ signaling and motility in Toxoplasma gondii. Journal of Biological Chemistry, 2019, 294, 8959-8972.	3.4	37
97	The Malaria Parasite's Lactate Transporter PfFNT Is the Target of Antiplasmodial Compounds Identified in Whole Cell Phenotypic Screens. PLoS Pathogens, 2017, 13, e1006180.	4.7	37
98	Use of Click Chemistry to Define the Substrate Specificity of Leishmania β-1,2-Mannosyltransferases. ChemBioChem, 2006, 7, 1384-1391.	2.6	36
99	Leishmania beta-1,2-mannan is assembled on a mannose-cyclic phosphate primer. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9458-9463.	7.1	36
100	Role of hexosamine biosynthesis in <i>Leishmania</i> growth and virulence. Molecular Microbiology, 2008, 69, 858-869.	2.5	36
101	DExSI: a new tool for the rapid quantitation of 13C-labelled metabolites detected by GC-MS. Bioinformatics, 2018, 34, 1957-1958.	4.1	36
102	A multi-platform metabolomics approach demonstrates changes in energy metabolism and the transsulfuration pathway in Chironomus tepperi following exposure to zinc. Aquatic Toxicology, 2015, 162, 54-65.	4.0	35
103	Intracellular Survival of Leishmania major Depends on Uptake and Degradation of Extracellular Matrix Glycosaminoglycans by Macrophages. PLoS Pathogens, 2015, 11, e1005136.	4.7	34
104	Function of hTim8a in complex IV assembly in neuronal cells provides insight into pathomechanism underlying Mohr-TranebjĦrg syndrome. ELife, 2019, 8, .	6.0	34
105	Methylation of GPLs in Mycobacterium smegmatis and Mycobacterium avium. Journal of Bacteriology, 2004, 186, 6792-6799.	2.2	33
106	Overexpression of sphingosine kinase 1 in liver reduces triglyceride content in mice fed a low but not high-fat diet. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 210-219.	2.4	33
107	Divergent Transcriptional Responses to Physiological and Xenobiotic Stress in Giardia duodenalis. Antimicrobial Agents and Chemotherapy, 2016, 60, 6034-6045.	3.2	33
108	A Family of Dual-Activity Glycosyltransferase-Phosphorylases Mediates Mannogen Turnover and Virulence in Leishmania Parasites. Cell Host and Microbe, 2019, 26, 385-399.e9.	11.0	33

#	Article	IF	CITATIONS
109	Immunometabolism of <i>Leishmania</i> granulomas. Immunology and Cell Biology, 2020, 98, 832-844.	2.3	33
110	Metabolic characteristics of CD8+ T cell subsets in young and aged individuals are not predictive of functionality. Nature Communications, 2020, 11, 2857.	12.8	33
111	Adenosine monophosphate deaminase 3 activation shortens erythrocyte half-life and provides malaria resistance in mice. Blood, 2016, 128, 1290-1301.	1.4	32
112	Cyanogenic glycosides from the rare Australian endemic rainforest tree Clerodendrum grayi (Lamiaceae). Phytochemistry, 2006, 67, 43-51.	2.9	31
113	Galactose-derived phosphonate analogues as potential inhibitors of phosphatidylinositol biosynthesis in mycobacteria. Organic and Biomolecular Chemistry, 2007, 5, 952.	2.8	31
114	Transcriptomics Indicates Active and Passive Metronidazole Resistance Mechanisms in Three Seminal Giardia Lines. Frontiers in Microbiology, 2017, 8, 398.	3.5	31
115	<i>Leishmania mexicana</i> can utilize amino acids as major carbon sources in macrophages but not in animal models. Molecular Microbiology, 2018, 108, 143-158.	2.5	31
116	Modulation of acyl-carnitines, the broad mechanism behind <i>Wolbachia</i> -mediated inhibition of medically important flaviviruses in <i>Aedes aegypti</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24475-24483.	7.1	30
117	Direct Evidence for ArOï£;S Bond Cleavage upon Inactivation of <i>Pseudomonas aeruginosa</i> Arylsulfatase by Aryl Sulfamates. ChemBioChem, 2008, 9, 613-623.	2.6	29
118	Identification of novel lipid modifications and intermembrane dynamics in Corynebacterium glutamicum using high-resolution mass spectrometry [S]. Journal of Lipid Research, 2018, 59, 1190-1204.	4.2	29
119	Unique properties of a subset of human pluripotent stem cells with high capacity for self-renewal. Nature Communications, 2020, 11, 2420.	12.8	29
120	Localization and activity of multidrug resistance protein 1 in the secretory pathway of Leishmania parasites. Molecular Microbiology, 2004, 51, 1563-1575.	2.5	28
121	Metabolomics and lipidomics reveal perturbation of sphingolipid metabolism by a novel anti-trypanosomal 3-(oxazolo[4,5-b]pyridine-2-yl)anilide. Metabolomics, 2016, 12, 1.	3.0	28
122	Structural studies of chrysolaminaran from the ice diatom Stauroneis amphioxys (Gregory). Carbohydrate Research, 1986, 153, 330-333.	2.3	26
123	Chewing the fat on natural killer T cell development. Journal of Experimental Medicine, 2006, 203, 2229-2232.	8.5	26
124	Methionine biosynthesis and transport are functionally redundant for the growth and virulence of Salmonella Typhimurium. Journal of Biological Chemistry, 2018, 293, 9506-9519.	3.4	26
125	Metabolomic profiling of the excretory–secretory products of hookworm and whipworm. Metabolomics, 2019, 15, 101.	3.0	26
126	The glycoinositolphospholipids from Leishmania panamensis contain unusual glycan and lipid moieties 1 1Edited by I. B. Holland. Journal of Molecular Biology, 1998, 282, 287-299.	4.2	25

#	Article	IF	CITATIONS
127	The Lipoprotein LpqW Is Essential for the Mannosylation of Periplasmic Glycolipids in Corynebacteria. Journal of Biological Chemistry, 2012, 287, 42726-42738.	3.4	25
128	Characterization of the <i>Plasmodium falciparum</i> and <i>P. berghei</i> glycerol 3â€phosphate acyltransferase involved in FASII fatty acid utilization in the malaria parasite apicoplast. Cellular Microbiology, 2017, 19, e12633.	2.1	25
129	Synthesis, Structural Elucidation, And Biochemical Analysis of Immunoactive Glucuronosyl Diacylglycerides of Mycobacteria and Corynebacteria. Journal of Organic Chemistry, 2013, 78, 2175-2190.	3.2	24
130	Hookworm-Derived Metabolites Suppress Pathology in a Mouse Model of Colitis and Inhibit Secretion of Key Inflammatory Cytokines in Primary Human Leukocytes. Infection and Immunity, 2019, 87, .	2.2	24
131	Purification, characterization of O-acetylated sialoglycoconjugates-specific IgM, and development of an enzyme-linked immunosorbent assay for diagnosis and follow-up of indian visceral leishmaniasis patients. Diagnostic Microbiology and Infectious Disease, 2004, 50, 15-24.	1.8	23
132	High-Content Assay for Measuring Intracellular Growth of <i>Leishmania</i> in Human Macrophages. Assay and Drug Development Technologies, 2015, 13, 389-401.	1.2	23
133	Identification of a Membrane Protein Required for Lipomannan Maturation and Lipoarabinomannan Synthesis in Corynebacterineae. Journal of Biological Chemistry, 2017, 292, 4976-4986.	3.4	23
134	Stress-induced Synthesis of Phosphatidylinositol 3-Phosphate in Mycobacteria. Journal of Biological Chemistry, 2010, 285, 16643-16650.	3.4	22
135	<i>PlasmodiumÂfalciparum</i> glucoseâ€6â€phosphate dehydrogenase 6â€phosphogluconolactonase is a potentialÂdrug target. FEBS Journal, 2015, 282, 3808-3823.	4.7	21
136	Metabolic Crosstalk between Leishmania and the Macrophage Host. Trends in Parasitology, 2016, 32, 666-668.	3.3	21
137	Leishmania Adaptor Protein-1 Subunits Are Required for Normal Lysosome Traffic, Flagellum Biogenesis, Lipid Homeostasis, and Adaptation to Temperatures Encountered in the Mammalian Host. Eukaryotic Cell, 2008, 7, 1256-1267.	3.4	20
138	More plastids in human parasites?. Trends in Parasitology, 2004, 20, 54-57.	3.3	19
139	Identification of Metabolically Quiescent <i>Leishmania mexicana</i> Parasites in Peripheral and Cured Dermal Granulomas Using Stable Isotope Tracing Imaging Mass Spectrometry. MBio, 2021, 12, .	4.1	19
140	Leishmania major proteophosphoglycans exist as membrane-bound and soluble forms and localise to the cell membrane, the flagellar pocket and the lysosome. International Journal for Parasitology, 2002, 32, 1701-1708.	3.1	18
141	Leishmania major Methionine Sulfoxide Reductase A Is Required for Resistance to Oxidative Stress and Efficient Replication in Macrophages. PLoS ONE, 2013, 8, e56064.	2.5	18
142	Extensive Metabolic Remodeling Differentiates Non-pathogenic and Pathogenic Growth Forms of the Dimorphic Pathogen Talaromyces marneffei. Frontiers in Cellular and Infection Microbiology, 2017, 7, 368.	3.9	18
143	Oxidative desulfurization pathway for complete catabolism of sulfoquinovose by bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	18
144	Reprogrammed <scp>mRNA</scp> translation drives resistance to therapeutic targeting of ribosome biogenesis. EMBO Journal, 2020, 39, e105111.	7.8	17

#	Article	IF	CITATIONS
145	Lipidomic Profiling of Adipose Tissue Reveals an Inflammatory Signature in Cancer-Related and Primary Lymphedema. PLoS ONE, 2016, 11, e0154650.	2.5	17
146	YAP regulates an SGK1/mTORC1/SREBP-dependent lipogenic program to support proliferation and tissue growth. Developmental Cell, 2022, 57, 719-731.e8.	7.0	17
147	Down-Regulation of the Trypanosomatid Signal Recognition Particle Affects the Biogenesis of Polytopic Membrane Proteins but Not of Signal Peptide-Containing Proteins. Eukaryotic Cell, 2007, 6, 1865-1875.	3.4	16
148	Golgi-Located NTPDase1 of Leishmania major Is Required for Lipophosphoglycan Elongation and Normal Lesion Development whereas Secreted NTPDase2 Is Dispensable for Virulence. PLoS Neglected Tropical Diseases, 2014, 8, e3402.	3.0	16
149	Time-Dependent Transcriptional Changes in Axenic Giardia duodenalis Trophozoites. PLoS Neglected Tropical Diseases, 2015, 9, e0004261.	3.0	16
150	The Metabolite Repair Enzyme Phosphoglycolate Phosphatase Regulates Central Carbon Metabolism and Fosmidomycin Sensitivity in Plasmodium falciparum. MBio, 2019, 10, .	4.1	16
151	Towards Improving Point-of-Care Diagnosis of Non-malaria Febrile Illness: A Metabolomics Approach. PLoS Neglected Tropical Diseases, 2016, 10, e0004480.	3.0	16
152	Characterization of a Novel GDP-mannose:Serine-protein Mannose-1-phosphotransferase from Leishmania mexicana. Journal of Biological Chemistry, 1999, 274, 6678-6688.	3.4	15
153	Characterization of a Leishmania mexicana mutant defective in synthesis of free and protein-linked GPI glycolipids. Molecular and Biochemical Parasitology, 2002, 125, 147-161.	1.1	15
154	Metabolomics in the study of spontaneous animal diseases. Journal of Veterinary Diagnostic Investigation, 2020, 32, 635-647.	1.1	15
155	MtrP, a putative methyltransferase in Corynebacteria, is required for optimal membrane transport of trehalose mycolates. Journal of Biological Chemistry, 2020, 295, 6108-6119.	3.4	15
156	<scp><i>P</i></scp> <i>lasmodium falciparum</i> is dependent on <i>de novo </i> <scp><i>myo</i></scp> â€inositol biosynthesis for assembly of <scp>GPI</scp> glycolipids and infectivity. Molecular Microbiology, 2014, 91, 762-776.	2.5	14
157	A Sulfoglycolytic Entner-Doudoroff Pathway in Rhizobium leguminosarum bv. trifolii SRDI565. Applied and Environmental Microbiology, 2020, 86, .	3.1	14
158	Lysosomal degradation of Leishmania hexose and inositol transporters is regulated in a stage-, nutrient- and ubiquitin-dependent manner. International Journal for Parasitology, 2011, 41, 791-800.	3.1	13
159	Changes in plasma lipids predict pravastatin efficacy in secondary prevention. JCI Insight, 2019, 4, .	5.0	13
160	Type I interferon antagonism of the JMJD3-IRF4 pathway modulates macrophage activation and polarization. Cell Reports, 2022, 39, 110719.	6.4	13
161	The surface glycoconjugates of parasitic protozoa: potential targets for new drugs. Australian and New Zealand Journal of Medicine, 1995, 25, 768-776.	0.5	12
162	InÂvivo cardiac glucose metabolism in the high-fat fed mouse: Comparison of euglycemic–hyperinsulinemic clamp derived measures of glucose uptake with a dynamic metabolomic flux profiling approach. Biochemical and Biophysical Research Communications, 2015, 463, 818-824.	2.1	12

#	Article	IF	CITATIONS
163	Nonâ€canonical metabolic pathways in the malaria parasite detected by isotopeâ€tracing metabolomics. Molecular Systems Biology, 2021, 17, e10023.	7.2	12
164	Establishing a distributed national research infrastructure providing bioinformatics support to life science researchers in Australia. Briefings in Bioinformatics, 2019, 20, 384-389.	6.5	11
165	The placental lipidome of maternal antenatal depression predicts socio-emotional problems in the offspring. Translational Psychiatry, 2021, 11, 107.	4.8	11
166	Coxiella burnetii utilizes both glutamate and glucose during infection with glucose uptake mediated by multiple transporters. Biochemical Journal, 2019, 476, 2851-2867.	3.7	11
167	Acylation-dependent and-independent membrane targeting and distinct functions of small myristoylated proteins (SMPs) in Leishmania major. International Journal for Parasitology, 2012, 42, 239-247.	3.1	10
168	Toxoplasma gondii apicoplast-resident ferredoxin is an essential electron transfer protein for the MEP isoprenoid-biosynthetic pathway. Journal of Biological Chemistry, 2022, 298, 101468.	3.4	10
169	Metabolomics Provide Sensitive Insights into the Impacts of Low Level Environmental Contamination on Fish Health—A Pilot Study. Metabolites, 2020, 10, 24.	2.9	9
170	Metabolic stringent response in intracellular stages of Leishmania. Current Opinion in Microbiology, 2021, 63, 126-132.	5.1	9
171	Relationship between evolutionary age and hydroxyproline-containing macromolecules in unicellular algae. Phytochemistry, 1982, 21, 2243-2248.	2.9	8
172	A highâ€resolution solution structure of a trypanosomatid FYVE domain. Protein Science, 2007, 16, 2552-2559.	7.6	8
173	Discovery of Inhibitors of Leishmania β-1,2-Mannosyltransferases Using a Click-Chemistry-Derived Guanosine Monophosphate Library. PLoS ONE, 2012, 7, e32642.	2.5	8
174	<i>Leishmania</i> Encodes a Bacterium-like 2,4-Dienoyl-Coenzyme A Reductase That Is Required for Fatty Acid β-Oxidation and Intracellular Parasite Survival. MBio, 2020, 11, .	4.1	8
175	Coordinated action of multiple transporters in the acquisition of essential cationic amino acids by the intracellular parasite Toxoplasma gondii. PLoS Pathogens, 2021, 17, e1009835.	4.7	8
176	Measurement of tissue azithromycin levels in self-collected vaginal swabs post treatment using liquid chromatography and tandem mass spectrometry (LC-MS/MS). PLoS ONE, 2017, 12, e0177615.	2.5	8
177	Chronic arsenic exposure and microbial drug resistance. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19666-19667.	7.1	7
178	EirA Is a Novel Protein Essential for Intracellular Replication of Coxiella burnetii. Infection and Immunity, 2020, 88, .	2.2	7
179	Determining the Mode of Action of Antimalarial Drugs Using Time-Resolved LC-MS-Based Metabolite Profiling. Methods in Molecular Biology, 2019, 1859, 225-239.	0.9	6
180	Evolution and function of carbohydrate reserve biosynthesis in parasitic protists. Trends in Parasitology, 2021, 37, 988-1001.	3.3	6

#	Article	IF	CITATIONS
181	The Key Glycolytic Enzyme Phosphofructokinase Is Involved in Resistance to Antiplasmodial Glycosides. MBio, 2020, 11, .	4.1	5
182	The Redox Homeostasis of Skeletal Muscle Cells Regulates Stage Differentiation of Toxoplasma gondii. Frontiers in Cellular and Infection Microbiology, 2021, 11, 798549.	3.9	5
183	MmpA, a Conserved Membrane Protein Required for Efficient Surface Transport of Trehalose Lipids in Corynebacterineae. Biomolecules, 2021, 11, 1760.	4.0	4
184	Sensing when it's time for sex. Nature, 2013, 499, 38-39.	27.8	3
185	Microbe-Metabolite Associations Linked to the Rebounding Murine Gut Microbiome Postcolonization with Vancomycin-Resistant Enterococcus faecium. MSystems, 2020, 5, .	3.8	3
186	Metabolic networks and metabolomics. , 2020, , 451-497.		3
187	Metabolomic Analysis of Toxoplasma gondii Tachyzoites. Methods in Molecular Biology, 2020, 2071, 435-452.	0.9	3
188	Clycosylated compounds of parasitic protozoa. , 2010, , 203-231.		2
189	Membrane targeting of the small myristoylated protein 2 (SMP-2) in Leishmania major. Molecular and Biochemical Parasitology, 2013, 190, 1-5.	1.1	2
190	Talaromyces marneffei simA Encodes a Fungal Cytochrome P450 Essential for Survival in Macrophages. MSphere, 2018, 3, .	2.9	2
191	The utilisation of glutamine and glucose by a 3-D tumour model trapped in quiescence. International Journal of Biochemistry and Cell Biology, 2021, 133, 105935.	2.8	2
192	Analysis of the Physiological and Metabolic State of Leishmania Using Heavy Water Labeling. Methods in Molecular Biology, 2020, 2116, 587-609.	0.9	2
193	The multifunctional enzyme S-adenosylhomocysteine/methylthioadenosine nucleosidase is a key metabolic enzyme in the virulence of Salmonella enterica var Typhimurium. Biochemical Journal, 2019, 476, 3435-3453.	3.7	2
194	Letter to the Glycoforum Transforming Glycoscience: An Australian Perspective. Glycobiology, 2014, 24, 1-3.	2.5	1
195	Malaria thriving on steroids. Nature Metabolism, 2021, 3, 892-893.	11.9	1
196	Using Fat to Turbo-Charge Intracellular Parasite Growth. Cell Host and Microbe, 2014, 16, 705-707.	11.0	0
197	Editorial overview: The diverse and secret lives of intracellular protist pathogens. Current Opinion in Microbiology, 2021, 64, 166-169.	5.1	0