
Yuval Ebenstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5797427/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Simple Quantification of Epigenetic DNA Modifications and DNA Damage on Multi-Well Slides. Springer Protocols, 2022, , 31-44.	0.1	0
2	Deconvolution of the epigenetic age discloses distinct inter-personal variability in epigenetic aging patterns. Epigenetics and Chromatin, 2022, 15, 9.	1.8	5
3	Long-Read Single-Molecule Optical Maps. , 2022, , 49-64.		0
4	Chemoenzymatic labeling of DNA methylation patterns for single-molecule epigenetic mapping. Nucleic Acids Research, 2022, 50, e92-e92.	6.5	16
5	Single-molecule optical genome mapping in nanochannels: multidisciplinarity at the nanoscale. Essays in Biochemistry, 2021, 65, 51-66.	2.1	25
6	Long reads capture simultaneous enhancer–promoter methylation status for cell-type deconvolution. Bioinformatics, 2021, 37, i327-i333.	1.8	8
7	From single-molecule to genome-wide mapping of DNA lesions: repair-assisted damage detection sequencing. Biophysical Reports, 2021, 1, 100017.	0.7	2
8	Multimodal single-molecule microscopy with continuously controlled spectral resolution. Biophysical Reports, 2021, 1, 100013.	0.7	9
9	5â€Hydroxymethylcytosine as a clinical biomarker: Fluorescenceâ€based assay for highâ€throughput epigenetic quantification in human tissues. International Journal of Cancer, 2020, 146, 115-122.	2.3	22
10	Label as you fold: methyltransferase-assisted functionalization of DNA nanostructures. Nanoscale, 2020, 12, 20287-20291.	2.8	9
11	Rapid Quantification of Oxidation and UV Induced DNA Damage by Repair Assisted Damage Detection-(Rapid RADD). Analytical Chemistry, 2020, 92, 9887-9894.	3.2	12
12	Quantifying DNA damage induced by ionizing radiation and hyperthermia using single DNA molecule imaging. Translational Oncology, 2020, 13, 100822.	1.7	17
13	Global modulation in DNA epigenetics during pro-inflammatory macrophage activation. Epigenetics, 2019, 14, 1183-1193.	1.3	21
14	Simultaneous detection of multiple DNA damage types by multi-colour fluorescent labelling. Chemical Communications, 2019, 55, 11414-11417.	2.2	24
15	Enzyme-free optical DNA mapping of the human genome using competitive binding. Nucleic Acids Research, 2019, 47, e89-e89.	6.5	17
16	Single Fluorescent Peptide Nanodots. ACS Photonics, 2019, 6, 1626-1631.	3.2	11
17	Long-read single-molecule maps of the functional methylome. Genome Research, 2019, 29, 646-656.	2.4	48
18	Microfluidic DNA combing for parallel single-molecule analysis. Nanotechnology, 2019, 30, 045101.	1.3	8

Yuval Ebenstein

#	Article	IF	CITATIONS
19	Analytical epigenetics: single-molecule optical detection of DNA and histone modifications. Current Opinion in Biotechnology, 2019, 55, 151-158.	3.3	19
20	Broad spectrum detection of DNA damage by Repair Assisted Damage Detection (RADD). DNA Repair, 2018, 66-67, 42-49.	1.3	17
21	Irys Extract. Bioinformatics, 2018, 34, 134-136.	1.8	7
22	Selective nanopore sequencing of human BRCA1 by Cas9-assisted targeting of chromosome segments (CATCH). Nucleic Acids Research, 2018, 46, e87-e87.	6.5	98
23	Hypersensitive quantification of global 5-hydroxymethylcytosine by chemoenzymatic tagging. Analytica Chimica Acta, 2018, 1038, 87-96.	2.6	22
24	Epigenetic Optical Mapping of 5-Hydroxymethylcytosine in Nanochannel Arrays. ACS Nano, 2018, 12, 7148-7158.	7.3	46
25	Single-molecule quantification of 5-hydroxymethylcytosine for diagnosis of blood and colon cancers. Clinical Epigenetics, 2017, 9, 70.	1.8	50
26	Synthesis and Photostability of Unimolecular Submersible Nanomachines: Toward Single-Molecule Tracking in Solution. Organic Letters, 2016, 18, 2343-2346.	2.4	11
27	Single-Molecule DNA Methylation Quantification Using Electro-optical Sensing in Solid-State Nanopores. ACS Nano, 2016, 10, 8861-8870.	7.3	72
28	Super-Resolution Genome Mapping in Silicon Nanochannels. ACS Nano, 2016, 10, 9823-9830.	7.3	49
29	Simple and cost-effective fluorescent labeling of 5-hydroxymethylcytosine. Methods and Applications in Fluorescence, 2016, 4, 044003.	1.1	8
30	Synthesis and evaluation of membrane permeabilizing properties of cationic amphiphiles derived from the disaccharide trehalose. Organic and Biomolecular Chemistry, 2016, 14, 3012-3015.	1.5	14
31	Sizing femtogram amounts of dsDNA by single-molecule counting. Nucleic Acids Research, 2016, 44, e17-e17.	6.5	12
32	Oneâ€Pot Chemoenzymatic Cascade for Labeling of the Epigenetic Marker 5â€Hydroxymethylcytosine. ChemBioChem, 2015, 16, 1857-1860.	1.3	32
33	Bacteriophage strain typing by rapid single molecule analysis. Nucleic Acids Research, 2015, 43, e117-e117.	6.5	61
34	Light-emitting self-assembled peptide nucleic acids exhibit both stacking interactions and Watson–Crick base pairing. Nature Nanotechnology, 2015, 10, 353-360.	15.6	136
35	Cas9-Assisted Targeting of CHromosome segments CATCH enables one-step targeted cloning of large gene clusters. Nature Communications, 2015, 6, 8101.	5.8	213
36	Novel biocompatible hydrogel nanoparticles: generation and size-tuning of nanoparticles by the formation of micelle templates obtained from thermo-responsive monomers mixtures. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	5

YUVAL EBENSTEIN

#	Article	IF	CITATIONS
37	Lighting Up Individual DNA Damage Sites by In Vitro Repair Synthesis. Journal of the American Chemical Society, 2014, 136, 7771-7776.	6.6	63
38	Spectroscopic Quantification of 5-Hydroxymethylcytosine in Genomic DNA. Analytical Chemistry, 2014, 86, 8231-8237.	3.2	32
39	Enzyme-Responsive Amphiphilic PEC-Dendron Hybrids and Their Assembly into Smart Micellar Nanocarriers. Journal of the American Chemical Society, 2014, 136, 7531-7534.	6.6	166
40	Toward Single-Molecule Optical Mapping of the Epigenome. ACS Nano, 2014, 8, 14-26.	7.3	42
41	The Structure of Anthracycline Derivatives Determines Their Subcellular Localization and Cytotoxic Activity. ACS Medicinal Chemistry Letters, 2013, 4, 323-328.	1.3	32
42	Beyond sequencing: optical mapping of DNA in the age of nanotechnology and nanoscopy. Current Opinion in Biotechnology, 2013, 24, 690-698.	3.3	103
43	Optical detection of epigenetic marks: sensitive quantification and direct imaging of individual hydroxymethylcytosine bases. Chemical Communications, 2013, 49, 8599.	2.2	66
44	Independent and simultaneous three-dimensional optical trapping and imaging. Biomedical Optics Express, 2013, 4, 2087.	1.5	26
45	Spatiotemporal manipulation of retinoic acid activity in zebrafish hindbrain development via photo-isomerization. Development (Cambridge), 2012, 139, 3355-3362.	1.2	12
46	Channeling DNA for optical mapping. Nature Biotechnology, 2012, 30, 762-763.	9.4	26
47	Rücktitelbild: Enzymatically Incorporated Genomic Tags for Optical Mapping of DNA-Binding Proteins (Angew. Chem. 15/2012). Angewandte Chemie, 2012, 124, 3786-3786.	1.6	0
48	Enzymatically Incorporated Genomic Tags for Optical Mapping of DNAâ€Binding Proteins. Angewandte Chemie - International Edition, 2012, 51, 3578-3581.	7.2	40
49	Back Cover: Enzymatically Incorporated Genomic Tags for Optical Mapping of DNA-Binding Proteins (Angew. Chem. Int. Ed. 15/2012). Angewandte Chemie - International Edition, 2012, 51, 3724-3724.	7.2	0
50	Aromatic Aldehyde and Hydrazine Activated Peptide Coated Quantum Dots for Easy Bioconjugation and Live Cell Imaging. Bioconjugate Chemistry, 2011, 22, 1006-1011.	1.8	36
51	Focusing on the objective. Nature Nanotechnology, 2010, 5, 99-100.	15.6	10
52	Mapping Transcription Factors on Extended DNA: A Single Molecule Approach. Springer Series in Chemical Physics, 2010, , 203-216.	0.2	0
53	Quantum Dots for In Vivo Small-Animal Imaging. Journal of Nuclear Medicine, 2009, 50, 493-496.	2.8	167
54	Combining atomic force and fluorescence microscopy for analysis of quantumâ€dot labeled protein–DNA complexes. Journal of Molecular Recognition, 2009, 22, 397-402.	1,1	23

Yuval Ebenstein

#	Article	IF	CITATIONS
55	Particle Size, Surface Coating, and PEGylation Influence the Biodistribution of Quantum Dots in Living Mice. Small, 2009, 5, 126-134.	5.2	418
56	Lighting Up Individual DNA Binding Proteins with Quantum Dots. Nano Letters, 2009, 9, 1598-1603.	4.5	50
57	Suppression of Quantum Dot Blinking in DTT-Doped Polymer Films. Journal of Physical Chemistry C, 2009, 113, 11541-11545.	1.5	35
58	Interaction of Scanning Probes with Semiconductor Nanocrystals; Physical Mechanism and Basis for Near-Field Optical Imagingâ€. Journal of Physical Chemistry A, 2006, 110, 8297-8303.	1.1	24
59	Nano@micro: General Method for Entrapment of Nanocrystals in Solâ^'Gel-Derived Composite Hydrophobic Silica Spheres. Chemistry of Materials, 2005, 17, 258-263.	3.2	64
60	Direct Observation of Highly Polarized Non-Linear Absorption Dipole of Single Semiconductor Quantum Rods. Materials Research Society Symposia Proceedings, 2004, 818, 330.	0.1	0
61	Two-Photon Fluorescence Microscopy of Single Semiconductor Quantum Rods:Â Direct Observation of Highly Polarized Nonlinear Absorption Dipole. Journal of Physical Chemistry B, 2004, 108, 2797-2800.	1.2	49
62	Transport and Charging in Single Semiconductor Nanocrystals Studied by Conductance Atomic Force Microscopy. Nano Letters, 2004, 4, 103-108.	4.5	23
63	Quantum-Dot-Functionalized Scanning Probes for Fluorescence-Energy-Transfer-Based Microscopy. Journal of Physical Chemistry B, 2004, 108, 93-99.	1.2	86
64	Lasing from CdSe/ZnS Quantum Rods in a Cylindrical Microcavity. Materials Research Society Symposia Proceedings, 2003, 789, 234.	0.1	3
65	Tapping Mode Atomic Force Microscopy for Nanoparticle Sizing:Â Tipâ^'Sample Interaction Effects. Nano Letters, 2002, 2, 945-950.	4.5	96
66	Fluorescence quantum yield of CdSe/ZnS nanocrystals investigated by correlated atomic-force and single-particle fluorescence microscopy. Applied Physics Letters, 2002, 80, 4033-4035.	1.5	202
67	Lasing from Semiconductor Quantum Rods in a Cylindrical Microcavity. Advanced Materials, 2002, 14, 317-321.	11.1	442