Robert L Fairchild

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5797320/publications.pdf Version: 2024-02-01

ROBERT | FAIRCHILD

#	Article	IF	CITATIONS
1	Macrophage-inducible C-type lectin activates B cells to promote T cell reconstitution in heart allograft recipients. American Journal of Transplantation, 2022, 22, 1779-1790.	2.6	5
2	Linking erythropoietin to Treg-dependent allograft survival through myeloid cells. JCI Insight, 2022, 7,	2.3	3
3	Molecular Signature of Antibody-Mediated Chronic Vasculopathy in Heart Allografts in a Novel Mouse Model. American Journal of Pathology, 2022, 192, 1053-1065.	1.9	7
4	Painless Photodynamic Therapy Triggers Innate and Adaptive Immune Responses in a Murine Model of UVâ€induced Squamous Skin Preâ€cancer. Photochemistry and Photobiology, 2021, 97, 607-617.	1.3	14
5	Continuous function of 80 primary renal allografts for 30–47 years with maintenance prednisone and azathioprine/mycophenolate mofetil therapy: A clinical mosaic of longâ€ŧerm successes. Clinical Transplantation, 2021, 35, e14131.	0.8	0
6	Endogenous memory T cells with donorâ€reactivity: early postâ€ransplant mediators of acute graft injury in unsensitized recipients. Transplant International, 2021, 34, 1360-1373.	0.8	3
7	C1q as a potential tolerogenic therapeutic in transplantation. American Journal of Transplantation, 2021, 21, 3519-3523.	2.6	6
8	Recipient myeloperoxidase-producing cells regulate antibody-mediated acute versus chronic kidney allograft rejection. JCI Insight, 2021, 6, .	2.3	6
9	Natural Killer Cells: Critical Effectors During Antibody-mediated Rejection of Solid Organ Allografts. Transplantation, 2021, 105, 284-290.	0.5	13
10	Early T cell infiltration is modulated by programed cell death-1 protein and its ligand (PD-1/PD-L1) interactions in murine kidney transplants. Kidney International, 2020, 98, 897-905.	2.6	12
11	B cell–derived ILâ€1β and ILâ€6 drive T cell reconstitution following lymphoablation. American Journal of Transplantation, 2020, 20, 2740-2754.	2.6	7
12	Antibody-induced vascular inflammation skews infiltrating macrophages to a novel remodeling phenotype in a model of transplant rejection. American Journal of Transplantation, 2020, 20, 2686-2702.	2.6	14
13	Anti-donor MHC Class II Alloantibody Induces Glomerular Injury in Mouse Renal Allografts Subjected to Prolonged Cold Ischemia. Journal of the American Society of Nephrology: JASN, 2019, 30, 2413-2425.	3.0	9
14	Neutrophil Cathepsin G Regulates Dendritic Cell Production of IL-12 during Development of CD4 T Cell Responses to Antigens in the Skin. Journal of Immunology, 2019, 202, 1045-1056.	0.4	9
15	Peritransplant VLA â€4 blockade inhibits endogenous memory CD 8 T cell infiltration into highâ€risk cardiac allografts and CTLA â€4lg resistant rejection. American Journal of Transplantation, 2019, 19, 998-1010.	2.6	3
16	In the absence of natural killer cell activation donor-specific antibody mediates chronic, but not acute, kidney allograft rejection. Kidney International, 2019, 95, 350-362.	2.6	20
17	Interleukin-27 promotes CD8+ T cell reconstitution following antibody-mediated lymphoablation. JCI Insight, 2019, 4, .	2.3	14
18	Myeloid-derived suppressor cells increase and inhibit donor-reactive T cell responses to graft intestinal epithelium in intestinal transplant patients. American Journal of Transplantation, 2018, 18, 2544-2558.	2.6	28

Robert L Fairchild

#	Article	IF	CITATIONS
19	Inflammatory Cytokines in the Papillary Tips and Urine of Nephrolithiasis Patients. Journal of Endourology, 2018, 32, 236-244.	1.1	22
20	Aquaporin 4 blockade improves survival of murine heart allografts subjected to prolonged cold ischemia. American Journal of Transplantation, 2018, 18, 1238-1246.	2.6	20
21	New Answers to Old Conundrums. Transplantation, 2018, 102, 209-214.	0.5	16
22	What's hot, what's new: Report from the American Transplant Congress 2018. American Journal of Transplantation, 2018, 18, 2857-2868.	2.6	1
23	Allograft dendritic cell p40 homodimers activate donor-reactive memory CD8+ T cells. JCI Insight, 2018, 3, .	2.3	9
24	Erythropoietin Receptor-Mediated Molecular Crosstalk Promotes T Cell Immunoregulation and Transplant Survival. Journal of the American Society of Nephrology: JASN, 2017, 28, 2377-2392.	3.0	44
25	γδT Cells Coexpressing Gut Homing α4β7 and αE Integrins Define a Novel Subset Promoting Intestinal Inflammation. Journal of Immunology, 2017, 198, 908-915.	0.4	35
26	Fingering a Natural Culprit During Antibody-Mediated Rejection. Transplantation, 2017, 101, 688-689.	0.5	0
27	Inflammation and Transplantation. , 2017, , 1147-1172.		Ο
28	CD4+ T lymphocytes produce adiponectin in response to transplants. JCI Insight, 2017, 2, .	2.3	11
29	Memory CD4 T Cells Induce Antibody-Mediated Rejection of Renal Allografts. Journal of the American Society of Nephrology: JASN, 2016, 27, 3299-3307.	3.0	51
30	Juicing Tregs in situ to improve kidney allograft outcomes. Kidney International, 2016, 89, 976-978.	2.6	3
31	Turning on the Lights inside Neutrophils. Journal of Immunology, 2016, 197, 681-682.	0.4	1
32	Natural killer cells play a critical role in mediatingÂinflammation and graft failure during antibody-mediated rejection of kidney allografts. Kidney International, 2016, 89, 1293-1306.	2.6	56
33	CD4 T Cell Help via B Cells Is Required for Lymphopenia-Induced CD8 T Cell Proliferation. Journal of Immunology, 2016, 196, 3180-3190.	0.4	19
34	IL-1 Receptor Signaling on Graft Parenchymal Cells Regulates Memory and De Novo Donor-Reactive CD8 T Cell Responses to Cardiac Allografts. Journal of Immunology, 2016, 196, 2827-2837.	0.4	6
35	Urine CXCL10/IP-10 Fingers Ongoing Antibody-Mediated Kidney Graft Rejection. Journal of the American Society of Nephrology: JASN, 2015, 26, 2607-2609.	3.0	8
36	IFN-γ Production by Memory Helper T Cells Is Required for CD40-Independent Alloantibody Responses. Journal of Immunology, 2015, 194, 1347-1356.	0.4	19

Robert L Fairchild

#	Article	IF	CITATIONS
37	Adverse Outcomes of Tacrolimus Withdrawal in Immune–Quiescent Kidney Transplant Recipients. Journal of the American Society of Nephrology: JASN, 2015, 26, 3114-3122.	3.0	172
38	Regulation of Chemokine Expression in the Tumor Microenvironment. Critical Reviews in Immunology, 2014, 34, 103-120.	1.0	31
39	Novel CD8 T Cell Alloreactivities in CCR5-Deficient Recipients of Class II MHC Disparate Kidney Grafts. Journal of Immunology, 2014, 193, 3816-3824.	0.4	4
40	Memory T Cells in Transplantation. Current Transplantation Reports, 2014, 1, 137-146.	0.9	21
41	IL-1 Receptor Signaling Is Required at Multiple Stages of Sensitization and Elicitation of the Contact Hypersensitivity Response. Journal of Immunology, 2012, 188, 1761-1771.	0.4	24
42	LITERATURE Watch:Implications for transplantation. American Journal of Transplantation, 2012, 12, 3169-3169.	2.6	1
43	Neutrophil Expression of Fas Ligand and Perforin Directs Effector CD8 T Cell Infiltration into Antigen-Challenged Skin. Journal of Immunology, 2012, 189, 2191-2202.	0.4	48
44	A TLR5 Agonist Inhibits Acute Renal Ischemic Failure. Journal of Immunology, 2011, 187, 3831-3839.	0.4	37
45	Hapten Application to the Skin Induces an Inflammatory Program Directing Hapten-Primed Effector CD8 T Cell Interaction with Hapten-Presenting Endothelial Cells. Journal of Immunology, 2011, 186, 2117-2126.	0.4	35
46	The Immune Response to Transplanted Organs. , 2011, , 1-22.		0
47	CXC Chemokine Ligand (CXCL) 9 and CXCL10 Are Antagonistic Costimulation Molecules during the Priming of Alloreactive T Cell Effectors. Journal of Immunology, 2010, 184, 3450-3460.	0.4	65
48	CD8 T Cells Producing IL-17 and IFN-Î ³ Initiate the Innate Immune Response Required for Responses to Antigen Skin Challenge. Journal of Immunology, 2009, 182, 5949-5959.	0.4	72
49	High renal ischemia temperature increases neutrophil chemoattractant production and tissue injury during reperfusion without an identifiable role for CD4 T cells in the injury. Transplant Immunology, 2009, 22, 62-71.	0.6	10
50	CXCR3 Antagonism Impairs the Development of Donor-Reactive, IFN-Î ³ -Producing Effectors and Prolongs Allograft Survival. Transplantation, 2009, 87, 360-369.	0.5	35
51	CD4 T Cell-Mediated Rejection of Cardiac Allografts in B Cell-Deficient Mice. Journal of Immunology, 2008, 181, 5257-5263.	0.4	26
52	CXCL9 promotes development of IFNâ€i³â€producing alloreactive CD8 T cells but is not a dominant factor in directing graft infiltration following heterotopic cardiac allografting. FASEB Journal, 2008, 22, .	0.2	0
53	ENDOTHELIAL CELL PRESENTATION OF ANTIGEN INITIATES THE ADAPTIVEâ€INNATE IMMUNE INTERACTION SEQUENCES IN T CELL MEDIATED RESPONSES IN THE SKIN. FASEB Journal, 2008, 22, 664.10.	0.2	0
54	Antibody-Mediated Rejection of Cardiac Allografts in CCR5-Deficient Recipients. Journal of Immunology, 2007, 179, 5238-5245.	0.4	58

ROBERT L FAIRCHILD

#	Article	IF	CITATIONS
55	Cathepsin G Is Required for Sustained Inflammation and Tissue Injury after Reperfusion of Ischemic Kidneys. American Journal of Pathology, 2007, 170, 930-940.	1.9	61
56	Expression of IL-8 during Reperfusion of Renal Allografts Is Dependent on Ischemic Time. Transplantation, 2006, 81, 783-788.	0.5	57
57	Activated NKT cells increase dendritic cell migration and enhance CD8+ T cell responses in the skin. European Journal of Immunology, 2006, 36, 2494-2503.	1.6	21
58	Lymphoid Sequestration of Alloreactive Memory CD4 T Cells Promotes Cardiac Allograft Survival. Journal of Immunology, 2006, 176, 770-777.	0.4	100
59	Raising the Direction Signposts that Guide T Cell Trafficking into Allografts. Transplantation, 2005, 79, 646-647.	0.5	3
60	Alloreactive T Cell Responses and Acute Rejection of Single Class II MHC-Disparate Heart Allografts Are under Strict Regulation by CD4+CD25+ T Cells. Journal of Immunology, 2005, 174, 3741-3748.	0.4	72
61	Inhibition of Polymorphonuclear Leukocyte–Mediated Graft Damage Synergizes With Short-Term Costimulatory Blockade to Prevent Cardiac Allograft Rejection. Circulation, 2005, 112, 320-331.	1.6	97
62	The intensity of neutrophil infiltration controls the number of antigen-primed CD8 T cells recruited into cutaneous antigen challenge sites. Journal of Leukocyte Biology, 2004, 76, 941-949.	1.5	92
63	CD40 Engagement Enhances Antigen-Presenting Langerhans Cell Priming of IFN-γ-Producing CD4+ and CD8+ T Cells Independently of IL-12. Journal of Immunology, 2004, 173, 2443-2452.	0.4	25
64	Effects of T Cell Frequency and Graft Size on Transplant Outcome in Mice. Journal of Immunology, 2004, 172, 240-247.	0.4	62
65	Early T Cell Response to Allografts Occuring Prior to Alloantigen Priming Up-Regulates Innate-Mediated Inflammation and Graft Necrosis. American Journal of Pathology, 2004, 165, 147-157.	1.9	78
66	The Yin and Yang of IFN-Î ³ in Allograft Rejection. American Journal of Transplantation, 2003, 3, 913-914.	2.6	15
67	Neutrophils Mediate Parenchymal Tissue Necrosis and Accelerate the Rejection of Complete Major Histocompatibility Complex-Disparate Cardiac Allografts in the Absence of Interferon-γ. American Journal of Pathology, 2003, 162, 509-519.	1.9	73
68	Chemokines: directing leukocyte infiltration into allografts. Current Opinion in Immunology, 2002, 14, 562-568.	2.4	146
69	Neutralization of Groα and Macrophage Inflammatory Protein-2 Attenuates Renal Ischemia/Reperfusion Injury. American Journal of Pathology, 2001, 159, 2137-2145.	1.9	734
70	Innate Immune Responses to Transplants. Immunity, 2001, 14, 369-376.	6.6	95
71	Regulatory Role of CD4 ⁺ T Cells During the Development of Contact Hypersensitivity Responses. Immunologic Research, 2001, 24, 69-78.	1.3	24
72	CD4+ and CD8+ T Cell Priming for Contact Hypersensitivity Occurs Independently of CD40-CD154 Interactions. Journal of Immunology, 2001, 166, 2323-2332.	0.4	36

ROBERT L FAIRCHILD

#	Article	IF	CITATIONS
73	Monokine Induced by IFN-Î ³ Is a Dominant Factor Directing T Cells into Murine Cardiac Allografts During Acute Rejection. Journal of Immunology, 2001, 167, 3494-3504.	0.4	150
74	IL-12 Augments CD8+ T Cell Development for Contact Hypersensitivity Responses and Circumvents Anti-CD154 Antibody-Mediated Inhibition. Journal of Immunology, 2001, 167, 156-162.	0.4	26
75	Early Chemokine Cascades in Murine Cardiac Grafts Regulate T Cell Recruitment and Progression of Acute Allograft Rejection. Journal of Immunology, 2001, 167, 2979-2984.	0.4	131
76	EARLY EXPRESSION OF INTERFERON-?? INDUCIBLE PROTEIN 10 AND MONOKINE INDUCED BY INTERFERON-?? IN CARDIAC ALLOGRAFTS IS MEDIATED BY CD8+ T CELLS1. Transplantation, 2000, 69, 1147-1155.	0.5	56
77	Groα-mediated recruitment of neutrophils is required for elicitation of contact hypersensitivity. European Journal of Immunology, 1999, 29, 3485-3495.	1.6	85
78	Can Sensitized Lymphocytes Retain Reactivity to Inner Ear Antigens After Retrieval From Frozen Storage?. Laryngoscope, 1997, 107, 878-882.	1.1	1
79	Diversion of CD4+ T cell development from regulatory T helper to effector T helper cells alters the contact hypersensitivity response. European Journal of Immunology, 1996, 26, 2606-2612.	1.6	33
80	Interferon-Î ³ Inducible Protein (IP-10) Expression Is Mediated by CD8+ T Cells and Is Regulated by CD4+ T Cells During the Elicitation of Contact Hypersensitivity. Journal of Investigative Dermatology, 1996, 107, 360-366.	0.3	55