Edward K Wakeland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5797106/publications.pdf Version: 2024-02-01

		20797	19169
142	14,747	60	118
papers	citations	h-index	g-index
1/13	1/13	1/13	16394
	145	145	10394
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nature Genetics, 2008, 40, 204-210.	9.4	1,192
2	The Antibacterial Lectin RegIIIÎ ³ Promotes the Spatial Segregation of Microbiota and Host in the Intestine. Science, 2011, 334, 255-258.	6.0	1,163
3	Mating patterns in seminatural populations of mice influenced by MHC genotype. Nature, 1991, 352, 619-621.	13.7	640
4	A Tlr7 translocation accelerates systemic autoimmunity in murine lupus. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9970-9975.	3.3	567
5	Delineating the Genetic Basis of Systemic Lupus Erythematosus. Immunity, 2001, 15, 397-408.	6.6	529
6	Personalized Immunomonitoring Uncovers Molecular Networks that Stratify Lupus Patients. Cell, 2016, 165, 551-565.	13.5	524
7	Polygenic control of susceptibility to murine systemic lupus erythematosus. Immunity, 1994, 1, 219-229.	6.6	476
8	Optimal Germinal Center Responses RequireÂa Multistage T Cell:B Cell Adhesion Process Involving Integrins, SLAM-Associated Protein, and CD84. Immunity, 2010, 32, 253-265.	6.6	341
9	The genetics of complex autoimmune diseases: non-MHC susceptibility genes. Nature Immunology, 2001, 2, 802-809.	7.0	338
10	Dense genotyping of immune-related disease regions identifies 14 new susceptibility loci for juvenile idiopathic arthritis. Nature Genetics, 2013, 45, 664-669.	9.4	337
11	Transancestral mapping and genetic load in systemic lupus erythematosus. Nature Communications, 2017, 8, 16021.	5.8	314
12	A nonsynonymous functional variant in integrin-αM (encoded by ITGAM) is associated with systemic lupus erythematosus. Nature Genetics, 2008, 40, 152-154.	9.4	277
13	Evolution of MHC genetic diversity: a tale of incest, pestilence and sexual preference. Trends in Genetics, 1993, 9, 408-412.	2.9	254
14	Association of Extensive Polymorphisms in the SLAM/CD2 Gene Cluster with Murine Lupus. Immunity, 2004, 21, 769-780.	6.6	253
15	Genetic Modifiers of Systemic Lupus Erythematosus in FcγRIIBâ^'/â^' Mice. Journal of Experimental Medicine, 2002, 195, 1167-1174.	4.2	238
16	Regulation of B Cell Tolerance by the Lupus Susceptibility Gene Ly108. Science, 2006, 312, 1665-1669.	6.0	233
17	Communal nesting patterns in mice implicate MHC genes in kin recognition. Nature, 1992, 360, 581-583.	13.7	227
18	Cr2, a Candidate Gene in the Murine Sle1c Lupus Susceptibility Locus, Encodes a Dysfunctional Protein. Immunity, 2001, 15, 775-785.	6.6	214

#	Article	IF	CITATIONS
19	Evolution of diversity at the major histocompatibility complex. Trends in Ecology and Evolution, 1990, 5, 181-187.	4.2	197
20	Epistatic Modifiers of Autoimmunity in a Murine Model of Lupus Nephritis. Immunity, 1999, 11, 131-139.	6.6	177
21	Systemic Lupus Erythematosus: Multiple Immunological Phenotypes in a Complex Genetic Disease. Advances in Immunology, 2006, 92, 1-69.	1.1	165
22	SLE Peripheral Blood B Cell, T Cell and Myeloid Cell Transcriptomes Display Unique Profiles and Each Subset Contributes to the Interferon Signature. PLoS ONE, 2013, 8, e67003.	1.1	165
23	Communal nesting and communal nursing in house mice, Mus musculus domesticus. Animal Behaviour, 1995, 50, 741-751.	0.8	163
24	Autoantibody profiling to identify individuals at risk for systemic lupus erythematosus. Journal of Autoimmunity, 2006, 27, 153-160.	3.0	162
25	Genetic dissection of lupus pathogenesis: a recipe for nephrophilic autoantibodies. Journal of Clinical Investigation, 1999, 103, 1685-1695.	3.9	162
26	Identification of IRF8, TMEM39A, and IKZF3-ZPBP2 as Susceptibility Loci for Systemic Lupus Erythematosus in a Large-Scale Multiracial Replication Study. American Journal of Human Genetics, 2012, 90, 648-660.	2.6	161
27	<i>Yaa</i> autoimmune phenotypes are conferred by overexpression of TLR7. European Journal of Immunology, 2008, 38, 1971-1978.	1.6	150
28	Genetic dissection of systemic lupus erythematosus. Current Opinion in Immunology, 1999, 11, 701-707.	2.4	148
29	A missense variant in NCF1 is associated with susceptibility to multiple autoimmune diseases. Nature Genetics, 2017, 49, 433-437.	9.4	143
30	The origin of MHC class II gene polymorphism within the genus Mus. Nature, 1988, 332, 651-654.	13.7	130
31	DGKE Variants Cause a Glomerular Microangiopathy That Mimics Membranoproliferative GN. Journal of the American Society of Nephrology: JASN, 2013, 24, 377-384.	3.0	130
32	Drug-Penetration Gradients Associated with Acquired Drug Resistance in Patients with Tuberculosis. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 1208-1219.	2.5	130
33	RAD51 interconnects between DNA replication, DNA repair and immunity. Nucleic Acids Research, 2017, 45, 4590-4605.	6.5	127
34	The mouse lymph node homing receptor is identical with the lymphocyte cell surface marker Ly-22: Role of the EGF domain in endothelial binding. Cell, 1990, 61, 611-622.	13.5	126
35	Immune dysregulation in cancer patients developing immune-related adverse events. British Journal of Cancer, 2019, 120, 63-68.	2.9	126
36	Ancestral polymorphisms of MHC class II genes: Divergent allele advantage. Immunologic Research, 1990, 9, 115-122.	1.3	125

#	Article	IF	CITATIONS
37	DNA polymerase-α regulates the activation of type I interferons through cytosolic RNA:DNA synthesis. Nature Immunology, 2016, 17, 495-504.	7.0	123
38	Trex1 regulates lysosomal biogenesis and interferon-independent activation of antiviral genes. Nature Immunology, 2013, 14, 61-71.	7.0	122
39	Kallikrein genes are associated with lupus and glomerular basement membrane–specific antibody–induced nephritis in mice and humans. Journal of Clinical Investigation, 2009, 119, 911-923.	3.9	114
40	Regulatory polymorphisms modulate the expression of HLA class II molecules and promote autoimmunity. ELife, 2016, 5, .	2.8	113
41	B Cell TLR7 Expression Drives Anti-RNA Autoantibody Production and Exacerbates Disease in Systemic Lupus Erythematosus–Prone Mice. Journal of Immunology, 2012, 189, 5786-5796.	0.4	111
42	CXCR4/CXCL12 Hyperexpression Plays a Pivotal Role in the Pathogenesis of Lupus. Journal of Immunology, 2009, 182, 4448-4458.	0.4	109
43	T cell hyperactivity in lupus as a consequence of hyperstimulatory antigen-presenting cells. Journal of Clinical Investigation, 2005, 115, 1869-1878.	3.9	108
44	Complete Genome Analysis of Three Acinetobacter baumannii Clinical Isolates in China for Insight into the Diversification of Drug Resistance Elements. PLoS ONE, 2013, 8, e66584.	1.1	107
45	T cell-intrinsic IL-1R signaling licenses effector cytokine production by memory CD4 T cells. Nature Communications, 2018, 9, 3185.	5.8	94
46	Multiplex inheritance of component phenotypes in a murine model of lupus. Mammalian Genome, 1999, 10, 176-181.	1.0	91
47	Systemic IFNâ€Î± drives kidney nephritis in B6. <i>Sle123 </i> mice. European Journal of Immunology, 2008, 38, 1948-1960.	1.6	89
48	ldentification of a Systemic Lupus Erythematosus Risk Locus Spanning <i>ATG16L2, FCHSD2</i> , and <i>P2RY2</i> in Koreans. Arthritis and Rheumatology, 2016, 68, 1197-1209.	2.9	89
49	The Major Murine Systemic Lupus Erythematosus Susceptibility Locus <i>Sle1</i> Results in Abnormal Functions of Both B and T Cells. Journal of Immunology, 2002, 169, 2694-2700.	0.4	85
50	Type I Interferons Produced by Resident Renal Cells May Promote End-Organ Disease in Autoantibody-Mediated Glomerulonephritis. Journal of Immunology, 2009, 183, 6831-6838.	0.4	82
51	Linezolid Dose That Maximizes Sterilizing Effect While Minimizing Toxicity and Resistance Emergence for Tuberculosis. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	81
52	Genetic Modulation of Tau Phosphorylation in the Mouse. Journal of Neuroscience, 2003, 23, 187-192.	1.7	80
53	Dysregulated expression of CXCR4/CXCL12 in subsets of patients with systemic lupus erythematosus. Arthritis and Rheumatism, 2010, 62, 3436-3446.	6.7	79
54	Susceptibility to lupus nephritis in the NZB/W model system. Current Opinion in Immunology, 1998, 10, 718-725.	2.4	71

#	Article	IF	CITATIONS
55	Immune dysregulation accelerates atherosclerosis and modulates plaque composition in systemic lupus erythematosus. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7018-7023.	3.3	71
56	Association of two independent functional risk haplotypes in <i>TNIP1</i> with systemic lupus erythematosus. Arthritis and Rheumatism, 2012, 64, 3695-3705.	6.7	69
57	Genetic predisposition to autoimmunity – What have we learned?. Seminars in Immunology, 2011, 23, 67-83.	2.7	68
58	Allelic heterogeneity in NCF2 associated with systemic lupus erythematosus (SLE) susceptibility across four ethnic populations. Human Molecular Genetics, 2014, 23, 1656-1668.	1.4	67
59	Genetic dissection of lupus nephritis in murine models of SLE. Journal of Clinical Immunology, 1997, 17, 272-281.	2.0	61
60	Cutting Edge: Inhibiting TBK1 by Compound II Ameliorates Autoimmune Disease in Mice. Journal of Immunology, 2015, 195, 4573-4577.	0.4	61
61	Ancestral Polymorphism of <i>Mhc</i> Class II Genes in Mice: Implications for Balancing Selection and the Mammalian Molecular Clock. Genetics, 1997, 146, 655-668.	1.2	61
62	Two Functional Lupus-Associated BLK Promoter Variants Control Cell-Type- and Developmental-Stage-Specific Transcription. American Journal of Human Genetics, 2014, 94, 586-598.	2.6	59
63	Extraction of cellular DNA from human cells and tissues fixed in ethanol. Analytical Biochemistry, 1987, 160, 135-138.	1.1	56
64	Genetic Dissection of the Murine Lupus Susceptibility Locus <i>Sle2</i> : Contributions to Increased Peritoneal B-1a Cells and Lupus Nephritis Map to Different Loci. Journal of Immunology, 2005, 175, 936-943.	0.4	55
65	Differential outcome of TRIF-mediated signaling in TLR4 and TLR3 induced DC maturation. Proceedings of the United States of America, 2015, 112, 13994-13999.	3.3	55
66	A Role for Ly108 in the Induction of Promyelocytic Zinc Finger Transcription Factor in Developing Thymocytes. Journal of Immunology, 2013, 190, 2121-2128.	0.4	53
67	B Cell–Intrinsic CD84 and Ly108 Maintain Germinal Center B Cell Tolerance. Journal of Immunology, 2015, 194, 4130-4143.	0.4	53
68	Genetic Dissection of Systemic Lupus Erythematosus Pathogenesis: Evidence for Functional Expression of <i>Sle3/5</i> by Non-T Cells. Journal of Immunology, 2002, 169, 4025-4032.	0.4	50
69	Revised nomenclature of mouseH-2 genes. Immunogenetics, 1990, 32, 147-149.	1.2	49
70	RNA sensing by conventional dendritic cells is central to the development of lupus nephritis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6195-204.	3.3	49
71	The Generation and Maintenance of MHC Class II Gene Polymorphism in Rodents. Immunological Reviews, 1990, 113, 207-226.	2.8	48
72	IRF1 governs the differential interferon-stimulated gene responses in human monocytes and macrophages by regulating chromatin accessibility. Cell Reports, 2021, 34, 108891.	2.9	46

#	Article	IF	CITATIONS
73	The role of SLAM/CD2 polymorphisms in systemic autoimmunity. Current Opinion in Immunology, 2010, 22, 706-714.	2.4	44
74	Heterozygosity of H–2 loci in wild mice. Nature, 1979, 281, 603-605.	13.7	41
75	Sle1ab Mediates the Aberrant Activation of STAT3 and Ras-ERK Signaling Pathways in B Lymphocytes. Journal of Immunology, 2005, 174, 1630-1637.	0.4	40
76	Epistatic Suppression of Systemic Lupus Erythematosus: Fine Mapping of <i>Sles1</i> to Less Than 1 Mb. Journal of Immunology, 2005, 175, 1062-1072.	0.4	39
77	Mouse lipocortin I gene structure and chromosomal assignment: Gene duplication and the origins of a gene family. Genomics, 1991, 10, 365-374.	1.3	38
78	The mapping of quantitative trait loci underlying strain differences in locomotor activity between 129S6 and C57BL/6J mice. Mammalian Genome, 2003, 14, 692-702.	1.0	36
79	Amino acid signatures of HLA Class-I and II molecules are strongly associated with SLE susceptibility and autoantibody production in Eastern Asians. PLoS Genetics, 2019, 15, e1008092.	1.5	36
80	The histocompatibility-2 system in wild mice. Immunogenetics, 1979, 8, 27-39.	1.2	35
81	PI3K/AKT/mTOR hypersignaling in autoimmune lymphoproliferative disease engendered by the epistatic interplay of Sle1b and FASlpr. International Immunology, 2007, 19, 509-522.	1.8	34
82	A plausibly causal functional lupus-associated risk variant in the STAT1–STAT4 locus. Human Molecular Genetics, 2018, 27, 2392-2404.	1.4	34
83	Dynamic transcriptomes of human myeloid leukemia cells. Genomics, 2013, 102, 250-256.	1.3	32
84	Few Single Nucleotide Variations in Exomes of Human Cord Blood Induced Pluripotent Stem Cells. PLoS ONE, 2013, 8, e59908.	1.1	31
85	The Rab Protein Family: Genetic Mapping of Six Rab Genes in the Mouse. Genomics, 1995, 30, 439-444.	1.3	30
86	The role of SAP and the SLAM family in autoimmunity. Current Opinion in Immunology, 2006, 18, 656-664.	2.4	29
87	Death-effector domain-containing protein DEDD is an inhibitor of mitotic Cdk1/cyclin B1. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2289-2294.	3.3	27
88	Spatial Network Mapping of Pulmonary Multidrug-Resistant Tuberculosis Cavities Using RNA Sequencing. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 370-380.	2.5	27
89	DNA polymorphism of MHC III genes in inbred and wild mouse strains. Immunogenetics, 1987, 25, 290-298.	1.2	25
90	A Murine Locus on Chromosome 18 Controls NKT Cell Homeostasis and Th Cell Differentiation. Journal of Immunology, 2003, 171, 4613-4620.	0.4	25

#	Article	IF	CITATIONS
91	Whole transcriptome RNA-seq analysis: tumorigenesis and metastasis of melanoma. Gene, 2014, 548, 234-243.	1.0	25
92	Dysregulated Lymphoid Cell Populations in Mouse Models of Systemic Lupus Erythematosus. Clinical Reviews in Allergy and Immunology, 2017, 53, 181-197.	2.9	24
93	Distinct patterns of innate immune activation by clinical isolates of respiratory syncytial virus. PLoS ONE, 2017, 12, e0184318.	1.1	24
94	Enhanced Egg-Induced Immunopathology Correlates With High IFN-Î ³ in Murine Schistosomiasis: Identification of Two Epistatic Genetic Intervals. Journal of Immunology, 2005, 174, 435-440.	0.4	23
95	Transcriptome dynamics during human erythroid differentiation and development. Genomics, 2013, 102, 431-441.	1.3	22
96	Polymorphisms of DQ ? genes in HLA-DR4 haplotypes from healthy and diabetic individuals. Immunogenetics, 1987, 25, 152-160.	1.2	21
97	A conserved long noncoding RNA, GAPLINC, modulates the immune response during endotoxic shock. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	21
98	T/Bâ€cell interactions are more transient in response to weak stimuli in SLEâ€prone mice. European Journal of Immunology, 2014, 44, 3522-3531.	1.6	18
99	Genomic Heterogeneity of Methicillin Resistant Staphylococcus aureus Associated with Variation in Severity of Illness among Children with Acute Hematogenous Osteomyelitis. PLoS ONE, 2015, 10, e0130415.	1.1	18
100	Antigen-specific responses and ANA production in B6.Sle1b mice: A role for SAP. Journal of Autoimmunity, 2008, 31, 345-353.	3.0	17
101	Late-Onset Immunotherapy Toxicity and Delayed Autoantibody Changes: Checkpoint Inhibitor–Induced Raynaud's-Like Phenomenon. Oncologist, 2020, 25, e753-e757.	1.9	17
102	Genetic polymorphisms ofQ region genes from wild-derived mice: Implications forQ region evolution. Immunogenetics, 1990, 31, 315-325.	1.2	16
103	Influence of Carbon Monoxide on Growth and Apoptosis of Human Umbilical Artery Smooth Muscle Cells and Vein Endothelial Cells. International Journal of Biological Sciences, 2012, 8, 1431-1446.	2.6	16
104	Association between body mass index, dosing strategy, and efficacy of immune checkpoint inhibitors. , 2021, 9, e002349.		16
105	Structural comparisons of serologically identical IA- and IE-encoded antigens from inbred and wild mice. Immunogenetics, 1979, 9, 535-550.	1.2	15
106	Production of 35 H-2 homozygous strains from wild mice. Immunogenetics, 1987, 26, 115-119.	1.2	15
107	Selective Expression of the 21-Kilodalton Tyrosine-Phosphorylated Form of TCR ζ Promotes the Emergence of T Cells with Autoreactive Potential. Journal of Immunology, 2005, 174, 6071-6079.	0.4	15
108	Transcriptional profiling identifies caspase-1 as a T cell–intrinsic regulator of Th17 differentiation. Journal of Experimental Medicine, 2020, 217, .	4.2	15

#	Article	IF	CITATIONS
109	<i>Slam</i> Haplotypes Modulate the Response to Lipopolysaccharide In Vivo through Control of NKT Cell Number and Function. Journal of Immunology, 2010, 185, 144-156.	0.4	14
110	Internal standard-based analysis of microarray data2—Analysis of functional associations between HVE-genes. Nucleic Acids Research, 2011, 39, 7881-7899.	6.5	14
111	Histocompatibility antigens controlled by theI region of the murineH-2 complex. Immunogenetics, 1977, 5, 445-451.	1.2	13
112	Tollâ€Like Receptor 9 Deficiency Breaks Tolerance to RNAâ€Associated Antigens and Upâ€Regulates Tollâ€Like Receptor 7 Protein in <i>Sle1</i> Mice. Arthritis and Rheumatology, 2018, 70, 1597-1609.	2.9	12
113	Association of Novel ALX4 Gene Polymorphisms with Antidepressant Treatment Response: Findings from the CO-MED Trial. Molecular Neuropsychiatry, 2018, 4, 7-19.	3.0	12
114	Outcome and Immune Correlates of a Phase II Trial of High-Dose Interleukin-2 and Stereotactic Ablative Radiotherapy for Metastatic Renal Cell Carcinoma. Clinical Cancer Research, 2021, 27, 6716-6725.	3.2	12
115	Genetic nomenclature for chicken immunoglobulin allotypes: An extensive survey of inbred lines and antisera. Immunogenetics, 1979, 8, 385-404.	1.2	11
116	Structural and genetic analysis of four chicken 7S immunoglobulin allotypes. Immunogenetics, 1975, 2, 531-541.	1.2	10
117	Brief Report: Singleâ€nucleotide polymorphisms in <i>VKORC1</i> are risk factors for systemic lupus erythematosus in Asians. Arthritis and Rheumatism, 2013, 65, 211-215.	6.7	10
118	Fatty Acid Amide Hydrolase Regulates Peripheral B Cell Receptor Revision, Polyreactivity, and B1 Cells in Lupus. Journal of Immunology, 2016, 196, 1507-1516.	0.4	10
119	The impact of Staphylococcus aureus genomic variation on clinical phenotype of children with acute hematogenous osteomyelitis. Heliyon, 2018, 4, e00674.	1.4	10
120	Statin Intolerance, Anti-HMGCR Antibodies, and Immune Checkpoint Inhibitor-Associated Myositis: A "Two-Hit―Autoimmune Toxicity or Clinical Predisposition?. Oncologist, 2020, 25, e1242-e1245.	1.9	10
121	Humoral and cellular correlates of a novel immune-related adverse event and its treatment. , 2021, 9, e003585.		10
122	An H-2 haplotype possibly derived by crossing-over between the (A α A β) duplex and the E βlocus. Immunogenetics, 1981, 14, 273-281.	1.2	9
123	Association between Antibiotic Exposure and Systemic Immune Parameters in Cancer Patients Receiving Checkpoint Inhibitor Therapy. Cancers, 2022, 14, 1327.	1.7	9
124	Deep sequencing reveals a DAP1 regulatory haplotype that potentiates autoimmunity in systemic lupus erythematosus. Genome Biology, 2020, 21, 281.	3.8	8
125	The genetics of lupus. Current Opinion in Nephrology and Hypertension, 2001, 10, 437-443.	1.0	7
126	RNA sequencing reveals the consequences of a novel insertion in dedicator of cytokinesis-8. Journal of Allergy and Clinical Immunology, 2016, 138, 289-292.e6.	1.5	6

#	Article	IF	CITATIONS
127	Minor structural variants of H-2K-controlled molecules in wild mice. Immunogenetics, 1982, 16, 491-493.	1.2	5
128	The Importance of Epistatic Interactions in the Development of Autoimmunity. Novartis Foundation Symposium, 0, , 76-93.	1.2	5
129	Mouse chromosome 3. Mammalian Genome, 1997, 7, S45-S59.	1.0	4
130	Molecular and Genetic Mechanisms Involved in the Generation of Mhc Diversity. , 1991, , 139-154.		4
131	Tissue kallkreins protect mice against antiâ€GBM induced nephritis and are potential Sle3 candidate genes. FASEB Journal, 2008, 22, 466-466.	0.2	4
132	Evolutionary origins of retroposon lineages of Mhc class II Ab alleles. Immunogenetics, 1996, 43, 115-24.	1.2	3
133	Hunting Autoimmune Disease Genes in NOD: Early Steps on a Long Road to Somewhere Important (Hopefully). Journal of Immunology, 2014, 193, 3-6.	0.4	3
134	sncRNA-1 Is a Small Noncoding RNA Produced by Mycobacterium tuberculosis in Infected Cells That Positively Regulates Genes Coupled to Oleic Acid Biosynthesis. Frontiers in Microbiology, 2020, 11, 1631.	1.5	3
135	Serum IgG Profiling of Toddlers Reveals a Subgroup with Elevated Seropositive Antibodies to Viruses Correlating with Increased Vaccine and Autoantigen Responses. Journal of Clinical Immunology, 2021, 41, 1031-1047.	2.0	3
136	Mouse chromosome 3. Mammalian Genome, 1998, 8, S50-S67.	1.0	1
137	Finding a unifying SLE expression signature in a sea of heterogeneity. Nature Reviews Rheumatology, 2020, 16, 357-358.	3.5	1
138	Serological and biochemical characterization of class II antigens in B10.W lines. Tissue Antigens, 1982, 19, 40-52.	1.0	0
139	Autoimmune Diseases in the Bioinformatics Paradigm. Genomics, Proteomics and Bioinformatics, 2015, 13, 205-207.	3.0	Ο
140	GG-04â€Pathogenic role of SAT1 variants in monogenic lupus. , 2018, , .		0
141	Co-circulation dynamics and persistence of newly introduced clades of 2012 outbreak associated West Nile Virus in Texas, 2012–2015. Infection, Genetics and Evolution, 2018, 66, 13-17.	1.0	0
142	Interferon regulatory factor 5 participates in Tollâ€like receptor 7 signaling. FASEB Journal, 2008, 22, 434-434.	0.2	0