Joshua W Makepeace

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5797096/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Materials for hydrogen-based energy storage – past, recent progress and future outlook. Journal of Alloys and Compounds, 2020, 827, 153548.	2.8	518
2	Reversible ammonia-based and liquid organic hydrogen carriers for high-density hydrogen storage: Recent progress. International Journal of Hydrogen Energy, 2019, 44, 7746-7767.	3.8	166
3	Hydrogen Production from Ammonia Using Sodium Amide. Journal of the American Chemical Society, 2014, 136, 13082-13085.	6.6	150
4	Ammonia decomposition catalysis using non-stoichiometric lithium imide. Chemical Science, 2015, 6, 3805-3815.	3.7	100
5	Demonstrating hydrogen production from ammonia using lithium imide – Powering a small proton exchange membrane fuel cell. Journal of Power Sources, 2016, 329, 138-147.	4.0	39
6	Facilitating green ammonia manufacture under milder conditions: what do heterogeneous catalyst formulations have to offer?. Chemical Science, 2022, 13, 890-908.	3.7	29
7	In situ X-ray powder diffraction studies of hydrogen storage and release in the Li–N–H system. Physical Chemistry Chemical Physics, 2014, 16, 4061.	1.3	28
8	Rapid synthesis of BiOBrxl1-x photocatalysts: Insights to the visible-light photocatalytic activity and strong deviation from Vegard's law. Catalysis Today, 2019, 335, 477-484.	2.2	27
9	Ammonia decomposition catalysis using lithium–calcium imide. Faraday Discussions, 2016, 188, 525-544.	1.6	26
10	Isotopic studies of the ammonia decomposition reaction mediated by sodium amide. Physical Chemistry Chemical Physics, 2015, 17, 22999-23006.	1.3	19
11	Regeneration of sodium alanate studied by powder in situ neutron and synchrotron X-ray diffraction. Journal of Materials Chemistry A, 2014, 2, 16594-16600.	5.2	16
12	Compositional flexibility in Li–N–H materials: implications for ammonia catalysis and hydrogen storage. Physical Chemistry Chemical Physics, 2021, 23, 15091-15100.	1.3	15
13	Structural Insights into the Lithium Amide-Imide Solid Solution. Journal of Physical Chemistry C, 2017, 121, 12010-12017.	1.5	14
14	Neutron diffraction and gravimetric study of the iron nitriding reaction under ammonia decomposition conditions. Physical Chemistry Chemical Physics, 2017, 19, 27859-27865.	1.3	13
15	Bulk phase behavior of lithium imide–metal nitride ammonia decomposition catalysts. Physical Chemistry Chemical Physics, 2018, 20, 22689-22697.	1.3	11
16	Isotopic studies of the ammonia decomposition reaction using lithium imide catalyst. Physical Chemistry Chemical Physics, 2017, 19, 4719-4724.	1.3	10
17	Assessing Potential Supports for Lithium Amide-imide Ammonia Decomposition Catalysts. ACS Applied Energy Materials, 2018, 1, 2657-2663.	2.5	10
18	Synthesis, PtS-type structure, and anomalous mechanics of the Cd(CN) ₂ precursor Cd(NH ₃) ₂ [Cd(CN) ₄]. Dalton Transactions, 2018, 47, 7263-7271.	1.6	9

#	Article	IF	CITATIONS
19	Neutron diffraction and gravimetric study of the manganese nitriding reaction under ammonia decomposition conditions. Physical Chemistry Chemical Physics, 2018, 20, 8547-8553.	1.3	8
20	Spin-ice physics in cadmium cyanide. Nature Communications, 2021, 12, 2272.	5.8	7
21	Lithium–nitrogen–hydrogen systems for ammonia synthesis: exploring a more efficient pathway using lithium nitride–hydride. Chemical Communications, 2022, 58, 6076-6079.	2.2	5
22	Catalyst-free synthesis of sodium amide nanoparticles encapsulated in silica gel. Chemical Physics, 2013, 427, 61-65.	0.9	3
23	Application of novel catalysts: general discussion. Faraday Discussions, 2016, 188, 399-426.	1.6	0