
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5796975/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Life-cycle analysis on biodiesel production from microalgae: Water footprint and nutrients balance. Bioresource Technology, 2011, 102, 159-165.	4.8	684
2	Exploring e-waste management systems in the United States. Resources, Conservation and Recycling, 2008, 52, 955-964.	5.3	307
3	Environmental, Social, and Economic Implications of Global Reuse and Recycling of Personal Computers. Environmental Science & Technology, 2008, 42, 6446-6454.	4.6	253
4	Food-energy-water (FEW) nexus for urban sustainability: A comprehensive review. Resources, Conservation and Recycling, 2019, 142, 215-224.	5.3	210
5	Siting public electric vehicle charging stations in Beijing using big-data informed travel patterns of the taxi fleet. Transportation Research, Part D: Transport and Environment, 2014, 33, 39-46.	3.2	208
6	Optimal locations of electric public charging stations using real world vehicle travel patterns. Transportation Research, Part D: Transport and Environment, 2015, 41, 165-176.	3.2	205
7	Revisiting drivers of energy intensity in China during 1997–2007: A structural decomposition analysis. Energy Policy, 2014, 67, 640-647.	4.2	157
8	Implications of China's foreign waste ban on the global circular economy. Resources, Conservation and Recycling, 2019, 144, 252-255.	5.3	147
9	CO2 emissions embodied in China's exports from 2002 to 2008: A structural decomposition analysis. Energy Policy, 2011, 39, 7381-7388.	4.2	140
10	China high resolution emission database (CHRED) with point emission sources, gridded emission data, and supplementary socioeconomic data. Resources, Conservation and Recycling, 2018, 129, 232-239.	5.3	129
11	Betweenness-Based Method to Identify Critical Transmission Sectors for Supply Chain Environmental Pressure Mitigation. Environmental Science & Technology, 2016, 50, 1330-1337.	4.6	125
12	Decoupling Analysis and Socioeconomic Drivers of Environmental Pressure in China. Environmental Science & Technology, 2014, 48, 1103-1113.	4.6	122
13	Mercury Flows in China and Global Drivers. Environmental Science & amp; Technology, 2017, 51, 222-231.	4.6	121
14	Environmental impact and economic assessment of secondary lead production: Comparison of main spent lead-acid battery recycling processes in China. Journal of Cleaner Production, 2017, 144, 142-148.	4.6	120
15	Virtual scarce water embodied in inter-provincial electricity transmission in China. Applied Energy, 2017, 187, 438-448.	5.1	119
16	Supply chain sustainability risk and assessment. Journal of Cleaner Production, 2019, 225, 857-867.	4.6	113
17	Income-Based Greenhouse Gas Emissions of Nations. Environmental Science & Technology, 2017, 51, 346-355.	4.6	107
18	The stability and profitability of the informal WEEE collector in developing countries: A case study of China. Resources, Conservation and Recycling, 2016, 107, 18-26.	5.3	105

#	Article	IF	CITATIONS
19	Waste electrical and electronic equipment (WEEE) recycling for a sustainable resource supply in the electronics industry in China. Journal of Cleaner Production, 2016, 127, 331-338.	4.6	103
20	Life cycle assessment of biodiesel production in China. Bioresource Technology, 2013, 129, 72-77.	4.8	101
21	Socioeconomic Drivers of Mercury Emissions in China from 1992 to 2007. Environmental Science & Technology, 2013, 47, 3234-3240.	4.6	101
22	A Review on Energy, Environmental, and Sustainability Implications of Connected and Automated Vehicles. Environmental Science & Technology, 2018, 52, 11449-11465.	4.6	100
23	Virtual Atmospheric Mercury Emission Network in China. Environmental Science & Technology, 2014, 48, 2807-2815.	4.6	99
24	Post-consumer packaging waste from express delivery in China. Resources, Conservation and Recycling, 2019, 144, 137-143.	5.3	97
25	Socioeconomic Drivers of Greenhouse Gas Emissions in the United States. Environmental Science & Technology, 2016, 50, 7535-7545.	4.6	96
26	CO ₂ Emissions Embodied in Interprovincial Electricity Transmissions in China. Environmental Science & Technology, 2017, 51, 10893-10902.	4.6	96
27	Mapping global carbon footprint in China. Nature Communications, 2020, 11, 2237.	5.8	92
28	Life cycle assessment of end-of-life treatments for plastic film waste. Journal of Cleaner Production, 2018, 201, 1052-1060.	4.6	90
29	China's 2020 clean energy target: Consistency, pathways and policy implications. Energy Policy, 2014, 65, 692-700.	4.2	88
30	"Internet +―recyclable resources: A new recycling mode in China. Resources, Conservation and Recycling, 2018, 134, 44-47.	5.3	88
31	Virtual Water Scarcity Risk to the Global Trade System. Environmental Science & Technology, 2018, 52, 673-683.	4.6	86
32	Energy and Air Emissions Embodied in Chinaâ^'U.S. Trade: Eastbound Assessment Using Adjusted Bilateral Trade Data. Environmental Science & Technology, 2009, 43, 3378-3384.	4.6	83
33	Life cycle assessment of High Speed Rail in China. Transportation Research, Part D: Transport and Environment, 2015, 41, 367-376.	3.2	76
34	Infrastructure ecology: an evolving paradigm for sustainable urban development. Journal of Cleaner Production, 2017, 163, S19-S27.	4.6	76
35	Development and application of an energy use and CO2 emissions reduction evaluation model for China's online car hailing services. Energy, 2018, 154, 298-307.	4.5	76
36	To realize better extended producer responsibility: Redesign of WEEE fund mode in China. Journal of Cleaner Production, 2017, 164, 347-356.	4.6	74

#	Article	IF	CITATIONS
37	Packaging waste from food delivery in China's mega cities. Resources, Conservation and Recycling, 2018, 130, 226-227.	5.3	73
38	Temporal and spatial variations in consumption-based carbon dioxide emissions in China. Renewable and Sustainable Energy Reviews, 2014, 40, 60-68.	8.2	68
39	Developing the Chinese Environmentally Extended Inputâ€Output (CEEIO) Database. Journal of Industrial Ecology, 2017, 21, 953-965.	2.8	65
40	Ecological civilization and government administrative system reform in China. Resources, Conservation and Recycling, 2020, 155, 104654.	5.3	64
41	China's 2020 carbon intensity target: Consistency, implementations, and policy implications. Renewable and Sustainable Energy Reviews, 2012, 16, 4970-4981.	8.2	63
42	Structure of the Global Virtual Carbon Network: Revealing Important Sectors and Communities for Emission Reduction. Journal of Industrial Ecology, 2015, 19, 307-320.	2.8	62
43	Understanding taxi travel patterns. Physica A: Statistical Mechanics and Its Applications, 2016, 457, 590-597.	1.2	62
44	Estimate ecotoxicity characterization factors for chemicals in life cycle assessment using machine learning models. Environment International, 2020, 135, 105393.	4.8	62
45	Assessment of Plastic Stocks and Flows in China: 1978-2017. Resources, Conservation and Recycling, 2020, 161, 104969.	5.3	62
46	Considerable environmental impact of the rapid development of China's express delivery industry. Resources, Conservation and Recycling, 2017, 126, 174-176.	5.3	60
47	Synergies of four emerging technologies for accelerated adoption of electric vehicles: Shared mobility, wireless charging, vehicle-to-grid, and vehicle automation. Journal of Cleaner Production, 2019, 230, 794-797.	4.6	59
48	Greenhouse Gas Implications of Fleet Electrification Based on Big Data-Informed Individual Travel Patterns. Environmental Science & Technology, 2013, 47, 9035-9043.	4.6	58
49	Emerging challenges and opportunities for the food–energy–water nexus in urban systems. Current Opinion in Chemical Engineering, 2017, 17, 48-53.	3.8	58
50	Virtual water scarcity risk to global trade under climate change. Journal of Cleaner Production, 2019, 230, 1013-1026.	4.6	56
51	Quantifying the Urban Food–Energy–Water Nexus: The Case of the Detroit Metropolitan Area. Environmental Science & Technology, 2019, 53, 779-788.	4.6	56
52	Waste oil derived biofuels in China bring brightness for global GHG mitigation. Bioresource Technology, 2013, 131, 139-145.	4.8	55
53	Uncovering urban food-energy-water nexus based on physical input-output analysis: The case of the Detroit Metropolitan Area. Applied Energy, 2019, 252, 113422.	5.1	54
54	Environmental benefits of taxi ride sharing in Beijing. Energy, 2019, 174, 503-508.	4.5	53

#	Article	IF	CITATIONS
55	Critical review of global plastics stock and flow data. Journal of Industrial Ecology, 2021, 25, 1300-1317.	2.8	53
56	Examining the sustainability of China's nickel supply: 1950–2050. Resources, Conservation and Recycling, 2018, 139, 188-193.	5.3	52
57	Forecasting the Impact of Connected and Automated Vehicles on Energy Use: A Microeconomic Study of Induced Travel and Energy Rebound. Applied Energy, 2019, 247, 297-308.	5.1	52
58	Greenhouse gas emission factors of purchased electricity from interconnected grids. Applied Energy, 2016, 184, 751-758.	5.1	51
59	A Quasi-Input-Output model to improve the estimation of emission factors for purchased electricity from interconnected grids. Applied Energy, 2017, 200, 249-259.	5.1	51
60	Sustainability implications of connected and autonomous vehicles for the food supply chain. Resources, Conservation and Recycling, 2018, 128, 22-24.	5.3	51
61	Benefits of coupled green and grey infrastructure systems: Evidence based on analytic hierarchy process and life cycle costing. Resources, Conservation and Recycling, 2019, 151, 104478.	5.3	51
62	Progress on environmental and economic evaluation of low-impact development type of best management practices through a life cycle perspective. Journal of Cleaner Production, 2019, 213, 1103-1114.	4.6	51
63	Big Data and Industrial Ecology. Journal of Industrial Ecology, 2015, 19, 205-210.	2.8	50
64	Virtual water scarcity risk in China. Resources, Conservation and Recycling, 2020, 160, 104886.	5.3	50
65	Agent-based life cycle assessment for switchgrass-based bioenergy systems. Resources, Conservation and Recycling, 2015, 103, 171-178.	5.3	49
66	Material Flows and Economic Growth in Developing China. Journal of Industrial Ecology, 2008, 11, 121-140.	2.8	48
67	Unintended consequences of bioethanol feedstock choice in China. Bioresource Technology, 2012, 125, 312-317.	4.8	48
68	Consumption-based human health impacts of primary PM2.5: The hidden burden of international trade. Journal of Cleaner Production, 2017, 167, 133-139.	4.6	48
69	Regional water footprints and interregional virtual water transfers in China. Journal of Cleaner Production, 2019, 228, 1401-1412.	4.6	47
70	Scale, distribution and variations of global greenhouse gas emissions driven by U.S. households. Environment International, 2019, 133, 105137.	4.8	46
71	INTERCONNECTEDNESS AND RESILIENCE OF THE U.S. ECONOMY. International Journal of Modeling, Simulation, and Scientific Computing, 2011, 14, 649-672.	0.9	44
72	Virtual CO ₂ Emission Flows in the Global Electricity Trade Network. Environmental Science & Technology, 2018, 52, 6666-6675.	4.6	43

#	Article	IF	CITATIONS
73	Multiagent Spatial Simulation of Autonomous Taxis for Urban Commute: Travel Economics and Environmental Impacts. Journal of the Urban Planning and Development Division, ASCE, 2018, 144, .	0.8	43
74	Developing a Science of Infrastructure Ecology for Sustainable Urban Systems. Environmental Science & Technology, 2012, 46, 7928-7929.	4.6	42
75	Global Drivers of Russian Timber Harvest. Journal of Industrial Ecology, 2016, 20, 515-525.	2.8	42
76	Potentials of GHG emission reductions from cold chain systems: Case studies of China and the United States. Journal of Cleaner Production, 2019, 239, 118053.	4.6	38
77	Identifying critical sectors and supply chain paths for the consumption of domestic resource extraction in China. Journal of Cleaner Production, 2019, 208, 1577-1586.	4.6	37
78	Virtual scarce water flows and economic benefits of the Belt and Road Initiative. Journal of Cleaner Production, 2020, 253, 119936.	4.6	37
79	Unintended Environmental Consequences and Co-benefits of Economic Restructuring. Environmental Science & Technology, 2013, 47, 12894-12902.	4.6	36
80	A dual strategy for controlling energy consumption and air pollution in China's metropolis of Beijing. Energy, 2015, 81, 294-303.	4.5	36
81	Trade-off between carbon reduction benefits and ecological costs of biomass-based power plants with carbon capture and storage (CCS) in China. Journal of Cleaner Production, 2017, 144, 279-286.	4.6	36
82	Low-carbon pathways for the booming express delivery sector in China. Nature Communications, 2021, 12, 450.	5.8	36
83	How Much Will China Weigh? Perspectives from Consumption Structure and Technology Development. Environmental Science & Technology, 2008, 42, 4022-4028.	4.6	34
84	Input–output networks offer new insights of economic structure. Physica A: Statistical Mechanics and Its Applications, 2019, 527, 121178.	1.2	33
85	Key transmission sectors of energy-water-carbon nexus pressures in Shanghai, China. Journal of Cleaner Production, 2019, 225, 27-35.	4.6	31
86	Socioeconomic drivers of water use in China during 2002–2017. Resources, Conservation and Recycling, 2020, 154, 104636.	5.3	31
87	Environmental performance analysis on resource multiple-life-cycle recycling system: Evidence from waste pet bottles in China. Resources, Conservation and Recycling, 2020, 158, 104821.	5.3	31
88	Assessing Environmental Impacts Embodied in Manufacturing and Labor Input for the Chinaâ^'U.S. Trade. Environmental Science & Technology, 2010, 44, 567-573.	4.6	30
89	Location Design and Relocation of a Mixed Car-Sharing Fleet with a CO ₂ Emission Constraint. Service Science, 2017, 9, 205-218.	0.9	30
90	Estimating Missing Unit Process Data in Life Cycle Assessment Using a Similarity-Based Approach. Environmental Science & Technology, 2018, 52, 5259-5267.	4.6	30

#	Article	IF	CITATIONS
91	Gigaton Problems Need Gigaton Solutions. Environmental Science & Technology, 2010, 44, 4037-4041.	4.6	28
92	An optimization model for regional micro-grid system management based on hybrid inexact stochastic-fuzzy chance-constrained programming. International Journal of Electrical Power and Energy Systems, 2015, 64, 1025-1039.	3.3	28
93	Final production-based emissions of regions in China. Economic Systems Research, 2018, 30, 18-36.	1.2	28
94	Modeling electric taxis' charging behavior using real-world data. International Journal of Sustainable Transportation, 2018, 12, 452-460.	2.1	27
95	Urban Air Pollution Mapping Using Fleet Vehicles as Mobile Monitors and Machine Learning. Environmental Science & Technology, 2021, 55, 5579-5588.	4.6	27
96	Estimation of Unit Process Data for Life Cycle Assessment Using a Decision Tree-Based Approach. Environmental Science & Technology, 2021, 55, 8439-8446.	4.6	27
97	Managing electric power system transition in China. Renewable and Sustainable Energy Reviews, 2012, 16, 5660-5677.	8.2	24
98	Modeling domestic geographical transfers of toxic substances in WEEE: A case study of spent lead-acid batteries in China. Journal of Cleaner Production, 2018, 198, 1559-1566.	4.6	24
99	The scope and understanding of the water–electricity nexus. Resources, Conservation and Recycling, 2019, 150, 104453.	5.3	23
100	Scaling of global input–output networks. Physica A: Statistical Mechanics and Its Applications, 2016, 452, 311-319.	1.2	22
101	The disposal and willingness to pay for residentsâ¿; scrap fluorescent lamps in China: A case study of Beijing. Resources, Conservation and Recycling, 2016, 114, 103-111.	5.3	22
102	Designing and Assessing a Sustainable Networked Delivery (SND) System: Hybrid Business-to-Consumer Book Delivery Case Study. Environmental Science & Technology, 2009, 43, 181-187.	4.6	21
103	Characterizing of water-energy-emission nexus of coal-fired power industry using entropy weighting method. Resources, Conservation and Recycling, 2020, 161, 104991.	5.3	21
104	A Dynamic Agent-Based Analysis for the Environmental Impacts of Conventional and Novel Book Retailing. Environmental Science & Technology, 2009, 43, 2851-2857.	4.6	20
105	Contribution of international photovoltaic trade to global greenhouse gas emission reduction: the example of China. Resources, Conservation and Recycling, 2019, 143, 114-118.	5.3	18
106	Rapid Prediction of Chemical Ecotoxicity Through Genetic Algorithm Optimized Neural Network Models. ACS Sustainable Chemistry and Engineering, 2020, 8, 12168-12176.	3.2	18
107	Overview of cold chain development in China and methods of studying its environmental impacts. Environmental Research Communications, 2020, 2, 122002.	0.9	18
108	Seven Approaches to Manage Complex Coupled Human and Natural Systems: A Sustainability Toolbox. Environmental Science & Technology, 2019, 53, 9341-9351.	4.6	17

#	Article	IF	CITATIONS
109	Societal metabolism in Northeast China: Case study of Liaoning Province. Resources, Conservation and Recycling, 2008, 52, 1082-1086.	5.3	16
110	Determinants of Greenhouse Gas Emissions from Interconnected Grids in China. Environmental Science & Technology, 2019, 53, 1432-1440.	4.6	16
111	Great Divergence Exists in Chinese Provincial Trade-Related CO ₂ Emission Accounts. Environmental Science & Technology, 2020, 54, 8527-8538.	4.6	16
112	Shared autonomous electric vehicle fleets with vehicle-to-grid capability: Economic viability and environmental co-benefits. Applied Energy, 2021, 302, 117500.	5.1	16
113	Critical transmission sectors for CO2 emission mitigation in supply chains. Technological Forecasting and Social Change, 2021, 164, 120499.	6.2	15
114	Reducing Greenhouse Gas Emissions from U.S. Light-Duty Transport in Line with the 2 °C Target. Environmental Science & Technology, 2021, 55, 9326-9338.	4.6	15
115	Effects of urbanization on phosphorus metabolism in a typical agricultural area. Journal of Cleaner Production, 2019, 214, 803-815.	4.6	14
116	Chinese environmentally extended input-output database for 2017 and 2018. Scientific Data, 2021, 8, 256.	2.4	14
117	Global Electricity Trade Network: Structures and Implications. PLoS ONE, 2016, 11, e0160869.	1.1	14
118	Complexity in Industrial Ecology: Models, Analysis, and Actions. Journal of Industrial Ecology, 2015, 19, 189-194.	2.8	13
119	Measuring integrated environmental footprint transfers in China: A new perspective on spillover-feedback effects. Journal of Cleaner Production, 2019, 241, 118375.	4.6	13
120	Copper-induced ripple effects by the expanding electric vehicle fleet: A crisis or an opportunity. Resources, Conservation and Recycling, 2020, 161, 104861.	5.3	13
121	Gross economic-ecological product as an integrated measure for ecological service and economic products. Resources, Conservation and Recycling, 2021, 171, 105566.	5.3	13
122	Trade-related water scarcity risk under the Belt and Road Initiative. Science of the Total Environment, 2021, 801, 149781.	3.9	13
123	Identifying sectoral impacts on global scarce water uses from multiple perspectives. Journal of Industrial Ecology, 2021, 25, 1503-1517.	2.8	12
124	An infinite life cycle assessment model to re-evaluate resource efficiency and environmental impacts of circular economy systems. Waste Management, 2022, 145, 72-82.	3.7	12
125	Quantifying the impacts of COVID-19 on Sustainable Development Goals using machine learning models. Fundamental Research, 2022, , .	1.6	12
126	Impact of emerging clean vehicle system on water stress. Applied Energy, 2013, 111, 644-651.	5.1	11

#	Article	IF	CITATIONS
127	Assessing land-use impacts by clean vehicle systems. Resources, Conservation and Recycling, 2015, 95, 112-119.	5.3	10
128	Secondary resource curse's formation and transmission mechanism based on environmental externality theory. Resources, Conservation and Recycling, 2020, 161, 104958.	5.3	10
129	U.S.–China Collaboration is Vital to Global Plans for a Healthy Environment and Sustainable Development. Environmental Science & Technology, 2021, 55, 9622-9626.	4.6	10
130	Quantitative assessment of enterprise environmental risk mitigation in the context of Na-tech disasters. Environmental Monitoring and Assessment, 2019, 191, 210.	1.3	9
131	Deriving hazardous material flow networks: A case study of lead in China. Journal of Cleaner Production, 2018, 199, 391-399.	4.6	8
132	Sensitivity of sectoral CO2 emissions to demand and supply pattern changes in China. Science of the Total Environment, 2019, 682, 572-582.	3.9	8
133	An infrastructure ecology approach for urban infrastructure sustainability and resiliency. , 2011, , .		7
134	Supply chain-wide sectoral water use characteristics based on multi-perspective measurements. Journal of Cleaner Production, 2020, 268, 122345.	4.6	7
135	Design and assessment of a sustainable networked system in the U.S.; Case study of book delivery system. , 2008, , .		6
136	Production- and consumption-based energy use in the ASEAN: Lessons from the Tiger and the cubs. Journal of Cleaner Production, 2021, 304, 126986.	4.6	6
137	Widespread range suitability and cost competitiveness of electric vehicles for ride-hailing drivers. Applied Energy, 2022, 319, 119246.	5.1	6
138	E-Market for e-waste. , 2008, , .		5
139	Research on Influential Factors of PM2.5 within the Beijing-Tianjin-Hebei Region in China. Discrete Dynamics in Nature and Society, 2018, 2018, 1-10.	0.5	5
140	Water, energy, land use, transportation and socioeconomic nexus: A blue print for more sustainable urban systems. , 2011, , .		4
141	System level impediments to achieving absolute sustainability using LCA. Procedia CIRP, 2020, 90, 399-404.	1.0	4
142	Proposal for an e-waste management system for the United States. , 2008, , .		3
143	Market dynamics and environmental impacts of e-commerce: A case study on book retailing. , 2008, , .		2
144	Energy and environmental flow model for a sustainable networked book delivery system in the United States. , 2008, , .		2

#	Article	IF	CITATIONS
145	Dependence of wind energy on electric utility in the U.S., , 2011, , .		2
146	Sustainable Infrastructure and Alternatives for Urban Growth. , 2012, , 141-172.		2
147	Energy and Water Interdependence, and Their Implications for Urban Areas. , 2013, , 239-270.		2
148	Sustainability review of the international reverse chain for reuse and recycling of computers. , 2008, ,		1
149	Forecast Modelling via Variations in Binary Image-Encoded Information Exploited by Deep Learning Neural Networks. PLoS ONE, 2016, 11, e0157028.	1.1	1
150	A Conceptual Model for Sustainable Consumption. , 0, , .		0
151	Environmental overhead of labor (EOL) embodied in trade: The case of 2002 China-U.S. trade. , 2009, , .		0
152	Dependence of wind energy on electric utility in the US. , 2011, , .		0
153	Assessing clean vehicle systems under constraints of freshwater resource. , 2012, , .		0
154	Environmental input-output analysis in industrial ecology. Acta Ecologica Sinica, 2016, 36, .	0.0	0
155	Sustainability strategies for consumer products in cities. , 2014, , .		0